
A Text Editor

List of Authors (McKenzie Walsh, Aaron Boening, Andrew Glenn, Andrea Taylor)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mtwalsh@oakland.edu, ajboenin@oakland.edu, awglenn@oakland.edu, aataylo3@oakland.edu

Abstract— The purpose of A Text Editor was to explore

different applications of Field Programmable Gate Arrays

(FPGA). This project includes various applications covered

during ECE 378 lecture such as UART and PS2 serial

communication and VGA display. This project accepted a text

input from a PS2 keyboard and then would output on the

VGA. In addition to displaying the imputed text to the VGA

display UART was used to change the color and background

color of the display. Changing the color of the text and

background color was accomplished by a separate computer

using a terminal program such as Putty. Overall this project

was very successful and all desired goals were accomplished.

I. INTRODUCTION

The goal of our project was to emulate a typing
experience of a simplified word processor using VHDL
coding and an FPGA. To use A Text Editor one will input
text using a standard PS2 keyboard and change the text color
and background color via UART. The motivation for this
project was to emulate a device that is used in everyday life.
As developers of this device it was important to understand
the functionality of the PS2 keyboard, UART functionality,
and VGA functionality. Although this project required
knowledge of many topics covered in class, some topics
required additional research. Learning and incorporating all
of these functions allowed us to create A Text Editor.

II. METHODOLOGY

A. Choosing "A Text Editor"

Initially our group felt pressure to design a video game
as this is a common final project for the ECE 378 course.
After some research we concluded that a more practical
application would be a better suit. Thus we chose to research
serial communication and UART. After reviewing UART we
considered some applications that were covered in class; it
was then determined that a text editor with varying
background color and text color would be appropriate as it
also included the VGA monitor and a PS2 keyboard which is
also a form of serial communication .

B. PS2 Keyboard

The PS2 port is the most common and widely known
interface to communicate with a host through synchronous
serial communication. Inside the PS2/USB cable there are
four wires: PS2 clock, PS2 data, ground and vcc. A
keyboard, like the one we used, has a microprocessor that
scans the keys for activity. When a key is pressed down it

will transmit a “make code”. Then once the key is released it
will also transmit a “break code”. The make and break codes
are generally 1 byte wide but can be up to 4 bytes wide
depending on which key you are pressing. We used all 1 byte
wide make and break codes for our project.

C. UART Receiver

A Universal Asynchronous Receiver and Transmitter is a
circuit that uses a serial line to send parallel data. The
receiver portion was only used in this project. The UART
receiver shifts in data bit by bit and then reassembles the
data, this is similar to a shift register. This circuit contains
one finite state machine. A modulo counter and a shift
register. The data communication begins with a start bit, ‘0’,
followed by the data bits. The stop bit or idle bit occurs when
the serial line is at ‘1’.

For the constant that indicates the number of data bits,

D_BIT, and SB_TICK is the constant number that indicates
the number of ticks needed for the stop bit. We used 8 data
bits and 16 for the ticks for stop bits. We implemented the
UART receiver in our project to change the color of text and
the background at the same time. Therefore we assigned
several keys on a different keyboard than the PS2 to belong
to a text color and background color. A table of color
combinations for text and background color can be seen
below in table 1. A schematic of the entire UART receiving
circuit can be seen below in figure 2.

Figure 1: Data Transmission From Chu’s

Text

mailto:awglenn@oakland.edu

Q Black Background / Gold Text

W Black Background / Green Text

E Red Background / Green Text

R Blue Background / Red Text

T Yellow Background / Black Text

Y Magenta Background / White Text

U White Background / Black Text

Default Black Background / Green Text

D. VGA

VGA (video graphics array) is a video display that is
widely accepted by PC graphics hardware and monitors. The
VGA port has five signals, three video signals for red, green,
and blue, along with the horizontal and vertical
synchronization signals. The h-sync and v-sync are linked
with the vertical and horizontal scans in the monitor. This
scan correlates to the X and Y pixels that give the position of
the pixel. It is assumed that the pixel rate is 25MHz . To
reduce the memory requirement and complexity of the Bit-
Mapped scheme display, we choose to use the Tile-Mapped
scheme. In this type of scheme it allows us to group a
collection of bits into a tile. Each tile is treated as its own
unit so if you had 640-by-480 pixel and the unit was defined
to an 8 by 8 square, then the screen becomes 80-by-60 tile-
oriented screen. This is the configuration used in our project
to display the text on the monitor.

E. General System Overview

As seen in Figure 3, the system is split into two sub-

blocks. One handles the UART communication and the

other handles the keyboard PS2 communication. The UART

portion is intended to translate UART inputs into a

background and text color. The PS2 portion actually

displays something to a VGA screen. The system requires a

clock input, a reset input, the UART input, two PS2 inputs

(one for clock and one for data) as well as an PS2

initialization input. It only outputs three bits for RGB, h-

sync, and v-sync. These signals are discussed briefly in the

VGA section.

 Figure 3: Top-level schematic showing the two

sub-blocks of the system.

 The block labeled top in Figure 3 represents the UART

portions of the design. It is divided into three blocks. A

modulo-m counter, a UART receiver, and a color decoder

(discussed in a later section). The modulo-m counter is used

in conjunction with the UART receiver. It makes sure the

receiver is communicating at the correct baud rate using the

clock speed of the board. This portion of the system is

shown in a schematic in Figure 4.

 Figure 4: Schematic for the UART portion of the

system

 The PS2 piece of the system is shown in Figure 5. It is

labeled text_screen_top in Figure 3. This block gives the

RGB, h-sync, and v-sync outputs to the VGA output. The

general outline of the block is as follows. The keyboard

sends PS2 inputs to the system that are received by the PS2

receiver. The data interpreted by the receiver is used by the

Text Generation FSM (discussed later) to decide when to

submit a letter to the screen and move the cursor. The -

key2ascii block takes the key code data and converts it to an

ASCII. The Text Generation Unit (discussed in the next

section) actually moves the cursor and submits letters to the

screen and outputs it to VGA.

Table 1: Color Codes

Figure 2: Schematic of UART Receiver

System from Chu’s Text

 Figure 5: Schematic for the PS2 portion of the

system

F. Text Generation Block

This block was taken from Chu's text but also modified
to achieve the desired functionality. The text generation
block manages the location of the cursor on the screen and
the submission of text symbols. So when this block receives
an ASCII code and the signal to submit, the symbol that
correlates to the ASCII code is sent to the screen at wherever
the cursor is located. This block also controls the color of the
background and the text (it gets the colors from the color
decoder mentioned below). This block was modified so that
the cursor functions like other text editors. When the cursor
gets to the end of the line, it moves to the start of the next
line. Before, the block only allowed for the cursor to move
right and down. It was modified to also move up and left so
that the arrow keys could work correctly. This was
implemented for easier navigation. It was also modified to
easily handle the carriage return, which also moves the
cursor to the start of the next line. Another slight
modification was made to the memory module. The reset
button did not actually clear the screen because the memory
module (taken from Chu's example) kept the text stored. A
reset condition was added which set all the memory array
values to zero. This worked, but it extended the time to
synthesize and implement the design within the ISE software
significantly. The reason is unknown, but perhaps the
method used to clear the array was inefficient and needed to
be optimized. This is something to look into.

G. Color decoder

The color decoder is a simple block which takes the data
from the UART receiver and translates it into a color to
display to the screen. There are eight color combinations
(background color and font color) which are attributed to the
arbitrary keys. More color combinations could be added
easily. Because the system only outputs three bits to the
VGA (one for red, one for green, one for blue), these color
combinations are limited. Implementing another standard,
like 12 bit RGB, would have allowed for more color
customization. Another improvement that could have been

made in regard to text and background color is the option to
choose each color separately.

H. Text Generation FSM

This is the control block that interprets the outputs of the
PS2 receiver. The receiver outputs a done pulse each time a
byte is sent over serially. So, for example, when the 'A' key
is pressed, the PS2 receiver will output 1C, done, F0, done,
1C, done. The make code (when the key is pressed) contains
the first byte. The break code (when the key is released)
contains the next two bytes. In this example, this finite state
machine would wait for the first done pulse, which an edge
detector shortens so it does not last through multiple clock
ticks, and then switch to the next state. It would next wait for
the F0 code to be sent over and switch states. Lastly it would
take the third code, 1C, and tell the text generation block to
submit the letter to the screen. Note, the text generation
block gets the ASCII code to place on the screen from a
block that converts the byte long key code to an ASCII code
(taken from Chu's text). After another clock tick, it would tell
the text generation block to

move the cursor to the right (so the user can continue
typing without having to move the cursor). This process
would then start over. The process changes slightly when an
arrow key is pressed because the make code is two bytes
instead of one and the break code is three codes instead of
two. The FSM just waits for more done pulses to pulse a
submit bit to the text generation block. The finite state
machine could have been altered to add more functionality to
the overall system. The FSM only allows a symbol to be
displayed on the screen on key release, so holding down a
key has no effect. To better emulate a normal typing
experience this would have to be changed. Key combinations
could also be accounted for in the FSM. This would,
however, require changing other aspects of the system in
order for the combinations to act normally. For example, a
key combination is required to use an exclamation point. The
state machine could interpret the combination but the
exclamation point symbol would have to be added to the font
tile library (which we got from Chu's text to save time) and
the key2ascii block would have to translate the exclamation
point code to ASCII. These changes could be added in time
but were excluded for simplicity.

III. EXPERIMENTAL SETUP

Since several portions of the system consisted of
modified pieces of code taken from other sources or relied
heavily several timing inputs, for a lot of the testing, it was
quicker to simply compile the code, synthesize it, and
confirm the functionality it gave. In other parts (mostly the
control blocks), simulations were used to verify the circuit.
These were useful in instances when we knew the desired
functionality and it would not take too long to simulate the
timings (like in the case of the PS2 receiver). In other cases,
it was decided that the better experimental method for testing
the functionality was implementing the block on the Artix7
board. For example, in order to test the UART receiver (a
modified receiver taken from Chu's text), the receiver was
implemented so that the output of the receiver was

PS2 Receiver

PS2 D

PS2 C

PS2 Code

PS2 Code New

Key To Ascii

Key Code
(7:0)

Ascii Code (7:0)

Text FSM

Data
In
(7:0)

Done

Data Out
(7:0)

Carr

Move X Left

Move X
Right

Move
Y

Move
Y Up

Submit

Text Screen Gen

Background (2:0)

Pixel X (9:0)

Pixel Y (9:0)

SW (6:0)

Text Color (2:0)

Move X
Right

Move X Left

Move Y

Move Y Up

Ret

Submit

Video
On

Text RGB
(2:0)

VGA Sync

Pixel_X (9:0)

Pixel_Y (9:0)

HSync

PTick

Video On

VSync

FDE

D

CE

C

O

PS2 C

PS2 D

Clock

Background

Text Color

R
es

e
t

constrained to the LEDs on the board. This way, it was easy
to tell what was coming out of the receiver and decide
whether it was functioning properly. Using this method, we
were able to tell when the receiver was set up for the wrong
clock time and adjust accordingly. Simulations were used for
the text generation FSM, and color decoder because these
were most important to the functionality of the system and
creating the test benches was not too time consuming. These
simulations were crucial to debugging the system and
probably should have been used more extensively to save
time. Figure 6 shows the simulation results for the text
generation state machine. It runs through the press and
release of the 'A' key. The simulation shows that given the
make and break codes along with done ticks, the state
machine runs through it states so that it can send a submit
pulse and a move right pulse, which are then used by the text
generation unit to actually move the cursor and submit the
letter. This functionality is expected because while typing,
the user is accustomed to pressing the letter and the cursor
moving to the next position.

Figure 6: Behavioral simulation for the text generation state

machine, showing the press and release of the 'A' key

IV. RESULTS

Ultimately A Text Editor performed as expected. We w
were able to display text and some symbols on a VGA screen
in addition to changing the color of both the background of
the VGA display and the color of the text via a PC with Putty
UART. In addition to being able to display letters on the
VGA screen other keys on the keyboard like the space bar,
backspace key, enter key and arrow keys were also fully
functional. In order to expand functionality of this program
we could include more symbols and combination keys
(shift+number) in our code. The following link is a video of
our project functioning
https://www.youtube.com/watch?v=M1KimC8q-IQ.

This project allowed us to explore different applications of
VHDL and how these applications could be combined. It
covered several topics covered in class, such as VGA output,
state machines, flip-flops, edge detection, etc. These topics

were discussed earlier in the report. This project also
provided a deeper learning opportunity for specific serial
communications. For example, learning about and dealing
with the make and break codes given by the keyboard was at
first overlooked.

V. CONCLUSION

From working on this project we took away a better
understanding of how VHDL works and how powerful it can
be. Also, by using the VGA hookup, we learned how that
whole setup works. This setup was covered in class but there
was additional information that we found out about the
VGA, such as tile mapping. Before the project none of us
knew about tile mapping and how to apply it to a VGA. By
researching we were able to get a grasp on it and apply it to
our code in order to view our test on the screen. We also
learned about the PS2 keyboard as we progressed through
the project. The original text generation finite state machine
overlooked the make and break codes given by the keyboard.
So instead of functioning as intended, each letter and move
cursor command was executed twice (one for key press and
one for key release). The test bench did not catch this issue
because the make and break codes were not simulated.
Another issue dealt with the clearing the screen with the reset
button. At first the reset button would not actually clear the
letters off the screen because they were still stored in the
memory module. Adding a condition that cleared the array in
the memory module worked but it extended the synthesize
time significantly. Some improvements that could be made
are that we could have added a 12 bit color scheme instead of
the 3 bit that we used. Using the 3 bit limits us to only a few
different colors to choose from. With the 12-bit scheme we
could make many more color combinations. Another idea we
could have added could have been to do more research on
the PS2 keyboard so all of the keys on the keyboard have a
function. Only the numbers, letters and a few other keys
worked. Also, we could have found out how to change the
keyboard from a press and let go input, to be able to hold
down the key and it keeps working, such as holding
backspace down. We cannot continuously hold down a key
and it works. We have to press and release over and over
again for the key to work.

VI. REFERENCES

[1] Chu, Pong P. FPGA Prototyping by VHDL Examples: Xilinx Spartan-
3 Version. Hoboken, NJ: Wiley-Interscience, 2008. Print.

[2] PS/2 Keyboard Interface (VHDL) - Logic - Eewiki." PS/2 Keyboard
Interface (VHDL) - Logic - Eewiki. N.p., n.d. Web. 14 Apr. 2015
https://eewiki.net/pages/viewpage.action?pageId=28278929

https://www.youtube.com/watch?v=M1KimC8q-IQ
https://eewiki.net/pages/viewpage.action?pageId=28278929
https://eewiki.net/pages/viewpage.action?pageId=28278929

