
Connect 4

Jonathon Glover, Ryan Sherry, Sony Mathews and Adam McNeily

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails:jvglover@oakland.edu, rgsherry@oakland.edu, smathews@oakland.edu, armcneil@oakland.edu

Abstract—A Connect 4 emulator that is displayed on a VGA

monitor. The game works with two players and is capable of

understanding who has won and various other processes with

the storage of data in an array of registers. The purpose of this

game was purely for entertainment. The code was challenging

to integrate into a VGA controller due to the dynamic image

processing from the screens horizontal and vertical sync. I

would recommend making this game in software with a GUI

instead of hardware descriptive language through a FPGA and

VGA display interface. Overall this project was an excellent

learning experience and the project itself incorporated almost

every aspect of combinational and synchronous circuitry

learned within the ECE 378 class.

I. INTRODUCTION

This report will cover the coding structure used to display
a fully functional Connect 4 game onto a VGA monitor. The
report will go into great detail as to how the three main
components used in the top file of the Connect 4 game work
together. Said components are; IndexState, Compute and
Graphics.

A very important aspect of this game was the use of state

machines and combinatorial logic circuits to understand
where the user wants to drop their piece during their turn and
then seamlessly displaying this data onto a 6x7 grid on the
VGA monitor. The game is also capable of knowing and
displaying if Player 1 (or Player 2) has won .

Added feature to this game is being able to change the

default colors of red and blue to shades of orange and pink
(for red) and shades of teal and purple (for blue). This
additional feature gives the game a more visually appealing
and versatile playing experience that can accommodate the
already well known and loved game of Connect 4.

II. METHODOLOGY

The major task to begin making this game was the design
of the data path circuitry. This first task was the most
fundamental step in beginning the design stage of the game,
as it laid out the foundation of which the code was meant to
be written. The idea of the game was very simple and the
main objectives to create a visually working and logically
correct game. Where the workload of the game was divided
into three main groups. The index selector, computation and
graphics output components.

 The operational concept of this game was meant to flow
in this order;

1. Have a home screen displaying the games title
and wait for the two players to press begin.

2. Have an easy to use interface with left, right and
drop as well as be able to change the coloring of
the player’s desired game piece.

3. Have the players take turns playing the game
until completing the game.

4. Have the game understand when a player has
won, and present a screen displaying which
player was the first to place four of their pieces
in a row, either horizontally, vertically or
diagonally.

In the following subcategories the components;

IndexSelector, Compute and Graphics are comprehensively
analyzed to allow you the reader to understand the grand
scheme of how this game was built and better the readers
understand of what went into making this game function. See
below a simplified top level block diagram that displays the
core components and their interconnections within the top
file. Also note that the debouncer components are mainly for
eliminating mechanical bounce for active high button inputs
and play no role in the logic functions of this game.

Figure 1. Top level simplified block diagram.

A. IndexSelector

When playing connect 4 there are seven possible
columns of which the user can choose to drop their piece.
The function of the IndexSelector was to allow the user to
visually see what row they are hovering above by sending
data signals into the Graphics component, as well as sending
this data into the Compute component so that it understand
which column that the user is going to drop their piece into.
The input data comes from two main sources which are
active high buttons on the Nexys 4 FPGA.

 In the top file these buttons are known as Left and Right.

The IndexSelector is a Moore state machine that responds to
these Left and Right inputs by comparing them to the current
state and the positional movement of which the user has
entered. The output consists of a decoded signal. For
example, if the user has chosen to move his/her piece into
the Left most Index, this is known as Index0. When in
Index0 the output consists of a 7-bit number of “0000001”
which only outputs a high for the most significant bit that the
index represents. Another example would be that the user
has chosen to begin at Index0 and press and release the Right
button six times. This sequence of inputs will cause the
IndexSelector to be in a state known as Index6 and the
corresponding decoded output will be “1000000”.

 Below is a state machine describing the input logic used

in the state machine as well as all possible outputs. Notice
that there are sub states in between each index. For example
X_01R this is an in-between state which represents the
movement from Index0 to Index1 by pressing the Right
button input. This state acts as a wait state and waits until
Right has a value of ‘0’. This functionality prevents the
Index from being swept from 0 to 6 instantaneously.

Figure 2. Index Selector Moore State machine.

B. Compute

The compute file is the heart of this program. It takes

the decoded 7-bit data stream from the IndexSelector about

the players column selection and another active high input

from the top file known as Drop, it controls visual screen

states of the game such as the; Home screen, Gameplay

Screen, player1 wins screen and player2 wins screen. The

compute file does this through three main components and

an array of 42 registers. These three main components are

called PlayerSwitcher, RowSelector and Winner.

Below is a very simplified image of this file consisting of

only one register(instead of 42). As you can see, the inputs

to the compute file are the clock, resetn, X_dim and E (for

dropping piece).

Figure 3. Compute component simplified block diagram.

 In order to fully describe this logic circuitry it is

necessary to first describe the components mealy state

machine sub-component known as the PlayerSwitcher. This

components main objective was to answer the following

questions. Is it in the home screen, gameplay or a winner

screen? Whose turn is it to play? When the user wants to

drop their piece, how do I save that players data into the

correct register and when am I allowed to do that? These

questions were developed into an algorithmic state machine

which takes signals from the RowSelector component called

“valid move” which tells the state machine “yes you can

place a piece in this column if it is not full” and from a

signal called hasWinner which tells the state machine “No

player has won this round”.

 The Winner and rowSelector components do both of

these tasks by taking in 2-bit data inputs from each and

every one of the 42 registers contents. Where “00”

represents empty, “10” represents player1 has filled this

space and “01” represents player2 has filled this space.

Once the player has decided upon a row and pressed enter,

the state machine outputs either a “10” or a “01” depending

on whose turn it is for its signal called ColorData as well as

a ‘1’ for its signal called Load.

Figure 4. PlayerSwitcher State machine.

 At the same time the rowSelector component

understands that the user has decided to choose whichever

column they are in by looking at the X_dim value for the

current IndexState of and then it outputs a decoded signal

representing the first row, starting from the bottom up, that

is empty (has a corresponding register value of “00”). The

row selector does this with 7 case statements representing

each possible index position, whilst inside each of these

case statements it processes an if statement that logically

checks to see which row in that column is the smallest

y_index position and is empty. Once it has found its first

empty row a decoded output signal representing the most

significant bit of that row is output.

 For example if the bottom row of that players

column is empty the rowSelector output will be a 6-bit

number with a value of “000001”, and if the first 5 rows of

that column are filled and the top row is empty the

rowSelector will output a “100000”. This data is used as the

Enable for the corresponding, as well as corresponding

X_dim input and the load signal from the PlayerSwitcher

Component. See below a representation of the Enable for

register position 00.

Figure 5. Compute component register enable.

 The reasoning behind an enable that is based off of a 3

input AND gate was done like this because the registers

enable was only supposed to take inputs of the players

current colorData if and only if the user has chosen and

selected that exact register from 42 possible choices. The

colordata signal and the load signal from the PlayerSwitcher

state machine are fed into each registers enable and dataIn

inputs.

 After all of this is said and done the register contents are

now updated and are sent into a component known as the

Winner component. This component logically checks the

contents of every single register and compares them with

any of the 69 possible ways to win in Connect 4. The “brute

force” algorithm used as a reference to code this component

can be found in the reference section listing [2].

 Once all of the possibly ways have been checked, the

Winner component outputs a ‘1’ if a player has won or a ‘0’

if no player has won this round. The signal is sent into the

PlayerSwitcher component and used in a decision diamond

for the next state. (Either player win screen or next players

turn).

 The final process that the Compute file does is outputting

the 2-bit data contents of each register as well as a signal

from the PlayerSwitcher state machine called screens which

helps the graphics component choose which screen to

display in its video control ram component.

C. Graphics

The graphics component takes in data from the compute
file for every registers contents as well as the current state of
the screen being displayed. The graphics component also has
inputs for clock, resetn, X_index position and 2 6-bit input
sources called p1shades and p2shades. Below is a simplified
model of the Graphics component containing only 1
IndexPosition instead of 7, and one color decoded
component instead of 42. This is purely for visual purposes
and is only meant to present the reader with a simplified
model of the Graphic component’s block diagram.

Figure 6. Graphics component simplified block diagram.

The first thing that happens with all of the data inside of

the 42 registers is that it is decoded into 12-bit RGB. The
current index position is also decoded into 12-bit RGB with
and enable, which is the MSB that the index correlates to.
This was done so that only the current index of the player
would be decoded into color representing the current players
unique color whilst the remaining six indexes remained
black.

The best way to present the logic behind each of these

components is to present the code used to decode this data.
Note that “01” and “10” represent a key color for each of the
player’s data that has been input into each register in the
Compute component.

Figure 7. Register Color 12-bit RGB decoder.

Figure 8. IndexPosition 12-bit RGB decoder

Note that the shades component is based off of the user’s
selection of the switches from the top file. They allow the
user to change the color of their game piece from a standard
red to shades of pink and orange. And from the standard blue
into shades of teal and purple. Below is a descriptive picture
of the RGB bit-manipulation done by each of the switch
inputs.

Figure 9. p1shades and p2shades technique.

After each of these colors is decoded into 12-bit RGB

they are fed into a multiplexor, which is effectively a 49 to 1
multiplexor. It views the 7 index locations and 42 register
components and the selector decides when to choose each of
these decoded color signals is appropriate to be displayed on
the VGA screen.

The method through which this is done is in the

HcVcSelector component. This component takes X and Y
coordinate data position from the vga_ctrl_12b component as
a reference of where the data from the screen is coming
from in the standard 640x480 pixel grid. The process of
choosing the selector line to the appropriate position was
done rather easily by choosing the bounded regions on the
screen to which these signals apply on a normal Connect 4
board. Below is an image appropriate describing the regions
that were displayed onto the VGA by these select lines.
However the only image displaying technique used was a 4
point bounded square which took HC and VC coordinates for
each representative square of data. This was done because it
was significantly easier to draw a square than it would have
been to draw a circle; the HcVcSelector code would have
been very cumbersome and would have to account for
approximately sixty times as many regions of display.

Figure 10. Connect 4 grid layout and register naming.

Up to this point of the game, everything surmounts to a

12-bit input signal into the vga_ctrl_12b component. Below
is a comparison to the file,[2] which took a 12 bit input
signal and image data from a txt file. The main differences
are that the Connect 4’s 12-bit input signal is based upon the
entire Connect 4 game being selected in 49 regions, 3 Img
Rom files, and a 4x1 multiplexor whose select line is based
off of the Screens signal coming from the PlayerSwitcher
state machine in the Compute component.

Figure 11. Connect 4 vga_ctrl_12b Top file.

Figure 12. Standard Vga_controller [2]

III. EXPERIMENTAL SETUP

A VHDL test bench on the Compute file was created in
order to create an end to end test for a game that ended in 7
turns. This was done to determine whether or not the
registers were storing data in the correct place, as well as
determining if the Winner component was capable of
determining a winner. The first move was made in the
bottom left corner and the second player simply played its
piece on top of player 1. The next move done by player one
was 1 index to the right, this pattern was done 7 times until
player1 had won. Below is a Xilinx timing simulation and a
description of the register format used for data analyzing in
the Compute file.

reg05, reg15, reg25, reg35, reg45, reg55, reg65,
reg04, reg14, reg24, reg34, reg44, reg54, reg64,
reg03, reg13, reg23, reg33, reg43, reg53, reg63,

 reg02, reg12, reg22, reg32, reg42, reg52, reg62,
reg01, reg11, reg21, reg31, reg41, reg51, reg61,

 reg00, reg10, reg20, reg30, reg40, reg50, reg60

Figure 13. Compute test bench simulation for winner.

IV. RESULTS

The project was then tested on the VGA in an end to end
test where the exact same sequence of moves was performed.
As shown, the game correctly shows the sequence of home
screen- to gameplay- to win screen as well as that the data is
indeed being placed into the correct registers and output
accordingly.

Figure 14. Home screen image

 Figure 15. Vga Game display

 Figure 16. Winner player 1

CONCLUSIONS

The project was a great exercise in learning how to create
large projects such as games and proved to be a humbling
experience when thinking about computer engineers who
made games in the 80’s this way. The main goal of this
project was to create a very simple game that everyone
knows such as Connect 4 and interface it with the Nexys 4
onto a VGA monitor. The biggest milestone that arose was
The creation of the data path circuitry and developing all of
the logic components and state machines that are used to
control the games Compute component.

 Further work that needs to be resolved before this game

is a top notch piece of art are as follows; The game must

display circles onto the VGA display (this is easily done it is

just very time consuming), The selection screens such as

home, player1win and player2win need to be reformatted so

that there is not duplicates of them and they more

aesthetically display the winner, and the addition of P1 and

P2 displayed onto the VGA monitor during gameplay in

each players respective corner. Once these graphical

changes have been accomplished this game should display

what the compute file is capable of storing. It’s also worth

mentioning that the addition of a video game controller into

the USB port could serve as a nicer way to play this game

instead of using the push buttons on the Nexys 4.

 Overall this project was a success as shown in figures 14,

15 and 16 the game works as intended. The project was an

enormous learning experience and it taught the importance

of planning and preparation when trying to solve a problem.

The game was very fun to make and has been a very

entertaining project to design.

REFERENCES

[1] Daniel Llamocca VGA_Controller VHDL code.

[2] Connect 4 check for winner Algorithm
“http://stackoverflow.com/questions/20201216/connect-4-check-for-
winner-algorithm”

