rical and Computer Engineering Department
ool of Engineering and Computer Science
Oakland University, Rochester, MI

, such a system as the Login Registers
iminate the need to memorize this login

implement
the

ys-4 FPGA Board
eg display

Methodology

All 8 inputs are converted to a
signal that would output a letter
or number on the seven segment
display. The keyboard outputs
are placed into a FSM and this
FSM is designed in such a way as
too have the outputs appear as if
they are all being displayed on a
seven segment display
simultaneously when the

read /write switch in the read
position. Furthermore, when the
read /write switch is in the write
position, it will display PASS on
the seven segment display using
a separate FSM.

rol: Selector

isplay with one switch
slect each “account”

is on, display “save” on

If off, d1sp1ay sp” on disp 2

ccounts, displ is blank. If 1, go to save or
If 2, display “Err”

Address Selector D

oard\Keyboard.xise - [RegSelectvhd] Reads the address switches and outputs a

s L B

o =] &

Py
k.

=1 & o Lo

fd B R R R R OB

Vel]

Tools Window _Layout _Help vector of enable values for the registers

Each enable vector only allows one register

to be enabled at one time, meaning only one
enticy RegSelect is address is updated at a time

port [(address: in =td gic wector (2 downto 0):

enab: out =2td logic wector (7 downto 0));
end RegSelect;

architecture Behavioral of RegSelect is
begin

process (address

begin

case address is

> enab < 0oQoQoo0o1™;
> enab
> enab
> enab
> enab
> enab

> enab
when others => enab <= "10000000";

when "000"

ki

when "001"

ki

when "O010"

ki

when "O11"

when "100"

ki

when "101"

ki

o
k)

ki

AR A A A A
| O

when "110"

end case:;

end process;

end Behavioral:;

Storing

inputs light up LEDs.

p in sequence until all
In the register are full.

re not processed as
eaning they do not light up any LEDs

Isplay

nd alternates between stock
” messages and the values
eading

Rotating Displays

Cutputs: process (y)
begin

case ¥y is

when 51 =» sk <=
pb <= "11111110";
when 52 =» gk <=
pb <= "11111101";
when 53 =» sk <=
pb == ™11111011";
when 54 =» gk <=
pb <= "11110111";
when 55 =» sk <=
pb == "11101111";
when 5S¢ =» sk <=
pb <= "11011111";
when 57 =» sk <=
pb <= "10111111";
when 58 =» sk <=
pb <= "01111111™";

when Skl =* sb <=

pb <= "111111107;

when Sk =* sb <=

pb == "11111101";
when Skb3
pb == ™11111011";

when Sbd4 =» sb <=

pb <= "11110111";

when Sbh =» sb <=

pb <= "11101111";

when Skt =* sb <=

pb <= "11011111";
when Skb7
pb <= "10111111";
when SkE

=» gh ==

=» gh ==

=» gh ==

UHOout_regl;
UHlout_regl;
UHZout_regl;
UH3ocut_regl;
UH4out_regl;
UHSout_regl;
UNeocut_regl;

UH7out_regl;

EWlcut_regl;
EWlout_regl;
IWZcut_regl;
IW3cut_regl;
IWdcut_regl;
EWScut_regl;

IWecut_regl;

EW7cut_regl;

= Using a statemachine, the

message disp!
LEDs rotates

ayed on the
between stock

messages and

periodically

register data

Methodology ;

Below is the FSM diagram for the output to the 7-
seg display.

Methodology

Below is the FSM diagram for the read /write
switch output to the 7-seg display.

TR

Methodology i

ta received and added to the registers were
serialized bitstream sent by the keyboard
ough a signal decoder in order to create
ode, which was then processed
ermine which particular character is
in the register. This 1process is enabled through the
write switch being placed in the “write” position,

e keyboard input is discarded without being stored.

he data is then stored in 16-value registers, and

registers are set to enable if the read / write switch is

he write position. Using a state machine with 18

‘i ach register is enabled one at a time and updated
| with the keyboard input. 8 of these registers are

implemented and enabled depending on the address

inputted by the switches.

Write Selector

= In the Write selector,
the signal for lit
LEDs and value
position are
outputted based on
state

when
when
when
when
when
when
when
when
when

when

0000000000

|""¢ '
I

[]
I
by

when

=

[
I

b

M

when

=
I
by

M

when

=
I
by

M

when

=
I
b
I

it

M

when

I
=
o
IS

=
I
b

it

M

when

=
I
b
I

it

M

when

=
I
by

M

when

00000000

end case;
end process;

'\Keyboard.xise - [regg.vhd]
Tools Window Layout Help

[BETo[sRIPELIO

elsif (clock reg'event and clock reg

if en = "1' then
if vy = '1'" then
if pos = "0)"
UNOout regl
el=sif pos = "0
UNlout_regd
el=sif pos = "0
UN out_regd

oy

m
|_.
H1
ﬁ
[n}
Tll

H

UH3ou
el=sif po
TH4out
el=if pos
UNSout_regd
el=sif pnh "0
UN&out_regd
el=sif po "
UNTout_regl
el=sif pos "1
PWDJut _regl

_regl

oy

_regl

Ly

|—r (1] H rn |"|‘

PW4out_regl
el=sif pos = "1

BUWErnt radll o=

then

ONHO im;

1" then
= UN1 in;

cthen
UH2 ing;

1" then

UH3 in;

0" then

UN4 in;

1" then

UNS_ing;

0" then

UNé _in;

" then

UHT_in;
then

= PWO0_in;

then

= PW1 in;

2 in;
cthen

FW3 _in;
then

_ing;
then

D5 im -

I E S

Each register holds 16 vectors of

Positional vector determines
which vector is updated

Jop level (Control)

begin

——keyboard input and selecting which wvalue to change in the register

2lo: Slowmo port map (clock =»> clk, resetn =»> reset, slowclock =» =2loclk):

code: peZkeyboard port map (resetn =» reset, clock =» clk, pa2c =» psZ2c, ps2d => ps2d, dout =» key, done =» rxdone):
p: Parser port map (input => key, walid => wvalid, en => wr_rd, output => chara):

preg: Parsereg port map (clk => =loclk, resetn =» reset, d =»> walid, g =»> walidcheck):;

valpos: Writeselector port map (clock => sloclk, resetn => reset, sStop => validcheck, en => wr_rd, => pos, lights =>
gel: RegSelect port map (address =»> address, enab =»> enab);

This program works using a slowed clock that shifts every 0.2 seconds in a keyboard
input program

The input is then given to a parser to get a character value

And the other components determine what register and what value will be edited

