
Login Registers

List of Authors (Nicholas Sajjakulnukit, Brett Shoup, David Martel)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: nnsajjak@oakland.edu, BShoup@oakland.edu, Djmartel@oakland.edu

Abstract—This program implements a series of

registers to store information given by the user

and displays this data on the 7-segment display

based on user-inputted selection on the

switches.

I. INTRODUCTION

This project utilized elements of previous labs
to implement several simultaneous registers to
store information and creates state machines to
determine which registers should be updated based
on the inputs. It also took input from a keyboard
through the USB hub, which was stored as data on
the registers.

The purpose of this project was to design a
system that allows users to store textual
information to be recalled later, and to do so in a
way that organizes the information in an intuitive
manner that is easy to retrieve and read. Though
the project itself uses usernames and passwords as
an example, this system could theoretically work
for any similar use with very little changes.

II. METHODOLOGY

A. Keyboard and Character Parser

The Keyboard provides the most essential input
into the project, and requires a specific parser to
process the data. Using sample code provided by
Professor LLamocca [1], a 9-bit signal is received
for all alphanumeric inputs given by a keyboard,
and all characters that can be represented on a 7-
segment LED display are processed as valid and
assigned as a 7-segment equivalent signal. All
other characters are processed as invalid and given
no signal. Processing the outputs accordingly
required knowledge of how the data is passed by

the keyboard, in particular how the keyboard clock
tells the board how to interpret the bitstream. [2]

B. Address and Value Selector

Based on the address input, a 8-bit enable

signal is generated to selectively enable one

register at a time. Additionally, a state machine

produces an output that is used to update each

value in the enabled register sequentially as valid

inputs are passed by the Keyboard input. This

state machine proceeds only while the read/write

input is high, as this is the only situation where

the state machine should be working. In addition,

these processes output an LED signal that allows

the user to see what state the process is in through

the LEDs on the board.

C. Registers

8 registers are instantiated to cover the 8

possible addresses. Each holds 16 values for this

project, designated as 8 username and 8 password

values. Each register is enabled only if their

particular bit in the enable signal is high, and each

value is updated only if the code from the value

selector state machine matches the address of the

value within the register. The registers themselves

output all stored values as signals to the control

circuit, and are reset to 0 if the reset switch is low.

D. Display

The display component reads the status of the

read/write input and decides whether to prompt

the user on the 7-segment displays or output data

to the 7-segment displays. When outputting data,

the display component cycles through a mixture

of stock outputs and the stored register values

every few seconds. This is done by using a state

machine to sequentially enable each 7-segment

display in turn and display the stored LED

representation of the data. The cycling of

messages is managed by a state machine that

switches between outputs to the display based on

a slowed clock process, which allows each

message to be read.

III. EXPERIMENTAL SETUP

This project is assembled using a keyboard, the
Nexys 4 FPGA board and its integrated
components, and the Xilinx ISE 14.7 program for
VHDL. The physical setup of the project only
requires that the keyboard by plugged into the
USB Host, and that switches 0-5 are available for
use. Switch 5 is the reset switch, switch 4 enables
the display process, and switch 3 is the read/write
input, while the other switches are the address
input. Based on the state of the inputs from both
the switches and the keyboard, the 7-segment
display should be producing an output provided
the reset switch is high, and the 16 LEDs should
be lit only while an input is being written to the
registers. If the reset switch is low, no outputs
should be seen on the 7-segment display or the
LEDs.

IV. RESULTS

The project functions as expected, though there
are a few unforeseen complications in its use.
Users cannot input valid inputs in sequence and
must instead input an invalid input in between
valid inputs. This is caused by the way that

keyboard inputs are classified as valid and invalid,
and the fact that the process that detects a change
in this signal prevents multiple valid inputs to be
sent sequentially. Additionally, the initial value
added is occasionally dropped while the last input
is often duplicated, which shifts values one digit to
the side. This is most likely due to a synchronous
error with the modified clock that causes changes
to the system to occur in the wrong clock cycle,
causing problems with the control state machine.
There is also a slight issue with the value selector
where a valid input from a previous cycle may
cause the state machine to prematurely progress to
the second state before an input is given.

CONCLUSIONS

From this project, it can be clearly seen that
values within a register can be modified
selectively instead of all together as displayed in
the labs, and that state machines provide an
efficient way of managing changes in signals
based on specific constraints. In addition, some
processes that require serialized input are often
easier to process if the clock used is slowed down
to a manageable extent for human input, else
erroneous inputs are given.

A few improvements that can be made to this
project are an intermediary signal to allow for
sequential inputs, redundancy checking in the
control state machine to ensure that the proper
values are modified, and an expanded list of
alternate characters to cover restricted characters.
In addition, the project would benefit from a more
precise period of message cycling in order to allow
for better readability for the user.

REFERENCES

[1] Daniel LLamocca, Unit 7 code . 2013

[2] Chu, Pong P. FPGA Prototyping by VHDL Examples
Xilinx Spartan-3 Version. Hoboken, N.J.: Wiley-
Interscience, 2008. 183-196. Print.

