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Abstract - The purpose of this project is to 

construct a fully functioning, simple digital calculator 

that performs the four basic mathematical operations, 

namely: Addition, Subtraction, Multiplication, and 

Division of eight-bit unsigned numbers. The calculator 

will consist of a Nexys4 FPGA board which will manage 

all of the computation and input and output functions of 

the Digital Calculator. Input will be retrieved from a 

numeric USB Keypad, and output will be displayed on 

the Seven-Segment Displays. In order to implement this 

Digital Calculator the main functionality has been 

divided into four distinct portions. The calculator will 

consist of an input block which will accept input from 

the numeric keypad and interpret this into a meaningful 

digital signal for the application. These digital signals 

will consist of two 8-bit expressible numeric inputs and 

an operator (+, - , *, /). The second portion consists of 

volatile memory (RAM) which will allow storage of the 

inputs. The third portion will be the logical portion 

which will be responsible for the actual calculation of 

the result. The final portion will be the output portion 

which will take the calculated result from the FPGA and   

display a human-readable result on an LCD. 

I. INTRODUCTION 

This report covers the setup, methodology, results 

and conclusions of the implementation of the Simple 

Digital Calculator.  

This project was to demonstrate the technical 

aspects related to constructing a functioning Digital 

Calculator, specifically input, calculation, and output. All 

these operations require careful mapping of inputs, outputs 

and careful organization in order for the calculator to 

function properly. Although in normal computational 

experience, the numerical computation seems a very simple 

process, this project demonstrates that it requires very 

careful mapping and state definition.  

The origin of the idea for this project was learning 

about the functionality of the Apollo Command Module 

computers used in the 1960's. These computers were 

constructed long before Integrated Circuits and Personal 

Computers were commonplace, and as such seem primitive. 

However, an explanation found online here, demonstrated 

the many operations that they were able to implement were 

quite complex.  

Implementing this Calculator demonstrates that 

despite the ordinary nature of calculating resources at our 

disposal, the simple process of calculation is a very 

complex one. Also, the process of data input, and data 

output are significantly more complex than are observed. 

This project allowed us to utilize all the knowledge 

gained from the Labs in the class. Specific details were 

gleaned from the ALU creation Lab (Lab 3) as to the 

construction of the Arithmetic Logic Unit block. Lab 2 

informed our implementation of the Multiplication feature 

of the Digital Calculator. Lab 4 was utilized in constructing 

the Register Array for storing ASCII values. Lab 5 

informed our design of the Division feature of the ALU, 

and Lab 6 provided us with a simpler way of addressing the 

registers and in the construction of our Finite State Machine 

in the Control Circuit. 

In addition to these Lab insights and the 

information learned in class about building Finite State 

Machines, there were other topics that were utilized in this 

project that we were required to learn. One of these was the 

interfacing of a PS/2 Keyboard with the Nexys4, along with 

the functioning of an LCD and its interface with the Nexys4. 



This project could be applied to calculate 

mathematical values for the user under any circumstances 

(on the way to the moon, for instance) 

II. METHODOLOGY 

In order to begin designing the calculator, the first step was 

to break the problem down into smaller pieces that could 

each be tackled one at a time by different members of the 

group. The task was broken down into seven main 

components, input, input translation, register storage, 

control signals, arithmetic translation, arithmetic operations, 

and result output. In this way each component of the system 

could be built and tested separately, and pieced together at 

the end. This required defining the appropriate inputs and 

outputs of each block so that upon completion, the blocks 

would be known to function correctly and thus would 

function as expected upon assembly. 

A. Input 

    The task of input was assigned to Ionatan and the 

solution prescribed was using an USB PS/2 keyboard for 

input. On the current Nexys4 board the original PS/2 input 

was removed in favor of the more ubiquitous USB port. 

Currently most keyboards function using the UART 

standard where keystrokes are transmitted on demand with 

the computer or receiver device polling constantly looking 

for user keystrokes. This takes place asynchronously (no 

clock is involved). As such, the keypad originally 

purchased for this task was insufficient as it specifically 

stated that it was non-synchronous (no clock signal). 

Currently many computer keyboards also function in this 

manner (only support the UART protocol). For this task it 

was critical that a keyboard that still supported the PS/2 

protocol be used. Many of the keyboards made in the 

intermediate period contained circuitry for both the PS/2 

and UART protocols.  

    Upon finding a keyboard that met the requirements, the 

next task was to retrieve the key codes. The keyboard is 

connected to the Nexys4 board on the USB HID input. This 

input contains 2 pins, PS2D, and PS2C. The PS2C signal 

line carries the clock signals which are used to synchronize 

the keyboard input. The PS2D serial signal line carries the 

data bits from the keyboard. The PS/2 keyboard protocol 

consists of 11 bits transacted. Initially when no key is being 

pressed, the PS/2 data signal remains high (1). Upon 

pressing a key, the signal goes low (0) which denotes that a 

key is being pressed. Then 8 bits are transmitted in 

succession which represents the key's key code. This unique 

key code identifies to the device, which key (or function for 

modifiers i.e. Shift) is being pressed. Upon completion of 

these 8 bits, a parity bit is sent, along with a stop bit which 

returns the PS/2 Data back to its idle state of high(1).  

    Utilizing the code from the book that the professor 

provided to us the keyboard input is captured using filters 

on the PS2C and PS2D input signals. In addition a 

mechanical debouncer is utilized to avoid the constant 

repeating of signals due to a key press (i.e. a key press can 

be registered multiple times on one press due to the way 

mechanical switches work). This allows a single key code 

to be registered. Since this signal is clocked, a Shift 

Register is utilized to store the 9-bit key code data (with the 

parity bit included). This output is then sent out of the 

ps2keyboard block along with a done signal indicating that 

a complete key code has been transmitted. 

B. Input Translation   

    Upon receiving a complete key code from the keyboard, 

the next step was to translate the input into a signal that the 

other components in the design could understand and use. 

In the original design, an LCD was utilized to display user 

input and arithmetic output. The LCD needed as an input an 

8-bit ASCII signal to display the value entered. As a result, 

the first step upon receiving the key code from the keyboard 

was to translate the key code input into an ASCII symbol.  

    ASCII stands for American Standard Code for 

Information Interchange. This is a well-established standard 

that represents numerical, alphabetic, and control signals in 

computing devices as unique 8-bit values. Utilizing this 

code allows the data being input to be usable to any device 

that understands the ASCII standard representation.  

    Thus upon receiving a complete 8-bit key code (by 

removing the parity bit from the ps2keyboard signal) from 

the keyboard, this block converts certain pre-defined 

keys(numbers, operators and control signals) into ASCII 

data. Along with that certain keys define an operation, or a 

control state for the calculator. Thus along with sending out 

an 8-bit ASCII signal, this Key code to ASCII decoder also 

sends out control data bits that control the state of the 

calculator [Deprecated in Final Design].  

C. Registers 

    The next task after the decoding of the keystrokes to 

ASCII was how to store the values in preparation for their 

input to the arithmetic portion of the circuit. This task was 

easily accomplished with the use of 7 registers. Each 

register stores the value of a particular keystroke in ASCII. 

Since the calculator calculates at most an 8 bit value, the 

maximum value of any input or output will be 255 (in 



decimal), and thus at most three keystroke inputs are 

allowed per input value (A or B). In order to simplify the 

process of computation, three values are required for input. 

As a result values must be padded with zeroes to exactly 

three digits. 

    Three of the registers are used to store the three ASCII 

values of A (the first input into the Arithmetic Logic Unit), 

and three registers are used to store the three ASCII values 

which represent B. In addition, one register is used to store 

the ASCII value assigned to the operator (+, -, *, /). 

    In the original design, the control circuit was responsible 

for addressing the proper register and enabling it, allowing 

the register to hold the intended ASCII value. Unfortunately, 

however, this caused numerous issues due to timing, and 

the registers were never able to be loaded properly using the 

control circuit. As a result an alternate method of enabling 

the registers was attempted which utilized the switches on 

the Nexys4 board as inputs. This allowed the ASCII values 

to be properly stored in the correct registers in preparation 

for calculation. 

D. Control Circuit (FSM) 

    The critical component of the calculator is the control 

circuit. This component contains the Finite State Machine 

that activates the calculator functionality. 

    In the original design, the control circuit accepted the 

input signals from the Key code to ASCII decoder (enter_in, 

clr_in, op_in, digit_in) and utilized them in the finite state 

machine to direct user input, store keystrokes to the 

registers, and calculate and display the result. Unfortunately 

this caused some significant timing issues and errors which 

we were unable to correct.  

    As a result the control circuit was minimized to just 

contain the trigger for calculation. Once all inputs are 

accurately stored in the register, the control circuit triggers 

the calculation on a BTNC press. Once this occurs, the 

Finite State Machine converts from an idle state to a 

calculation state. Signals are sent downstream to ASCII to 

Binary and an ASCII to Operator decoder that convert the 

ASCII inputs into Binary inputs that the ALU can use to 

calculate a result. 

 

E. Arithmetic Translation     

    While the numerical and operator values are inserted into 

the registers denoted above, the Arithmetic Logic Unit will 

be unable to compute the value as it does not understand 

what the ASCII values represent. As a result, three decoder 

blocks are built in and connected to the outputs of the 

registers. 

    One decoder is connected to the three registers that store 

the value of input A. This decoder is designed to accept 3 

ASCII values and output a single 8-bit binary value 

representation of the value. This output (A) will be input to 

the Arithmetic Logic Unit for computation. This decoder 

also contains an enable signal that is controlled by the 

Finite State Machine in the Control Circuit. This is required 

to ensure that all 3 ASCII input values are populated in the 

registers before the A operand is converted to binary. If not, 

this would result in incomplete binary value being 

transmitted to the ALU. Likewise the three registers that 

store the value of B are connected to an ASCII to Binary 

decoder which functions similarly.  

    Finally there is a third decoder connected to the register 

storing the ASCII value of the operator (+, -, *, /). This 

decoder accepts as input the ASCII value stored in the 

operator register and outputs a 2-bit binary signal which the 

ALU will use to determine which operation to run. The 

value "00" represents addition, the value "01" represents 

subtraction, the value "10" represents multiplication, and 

the value "11" represents division. This decoder also 

contains an enable bit controlled by the Finite State 

Machine in the Control Circuit to avoid incomplete values 

being transmitted to the ALU. 

F. Arithmetic Operations 

    The next circuit component is the Arithmetic Logic Unit. 

This unit is the block that does the actual computation of 



results. Most of this functionality was gleaned from 

previous labs.  

    The Arithmetic Logic Unit (ALU) accepts as input three 

values. Two 8-bit binary values (A and B) are accepted as 

the operands to use for computation, and a 2-bit binary 

operator signal is accepted which determines the operation 

to be performed.  

    The ALU performs the computation and returns 2 8-bit 

binary signals. A result signal is returned which represents 

the result of the computation. Likewise a remainder signal 

is also returned which represents the remainder of a division 

operation. This value will be "00000000" for addition, 

subtraction, and multiplication. It will only contain another 

value in a division operation where a remainder is returned. 

    For addition the two 8-bit binary signals are added and 

the resulting 8-bit binary result value is returned. If the 

resulting value is greater than 8 bits, the extra bits are 

removed as this is an unsigned addition. Similarly for 

subtraction, the two 8-bit binary signals (A and B) are 

accepted and the operation is performed as an unsigned 

subtraction. For multiplication, the two operands are 

reduced to two 4-bit inputs by using only the least 

significant 4 bits. This is done since using all 8 bits would 

result in an overflow. By reducing the inputs to 4 bits the 

two operands can be at most 15 in decimal which would 

result in a maximum value of 255(decimal), which is the 

greatest value an 8-bit binary result could have.  

    Finally for division, the ALU accepts the two 8-bit binary 

operands and performs the division which results in an 8-bit 

binary result signal. Also for division, the remainder of the 

division operation is calculated and output as an 8-bit 

binary signal. 

G. Output 

    The final step in the digital calculator system is to display 

the output of the operation.  

    In the original design, the output was designed to be 

output on the LCD display. Since the LCD only accepts 

ASCII input, all outputs were encoded to ASCII values.  

    However due to issues with character corruption and 

problems with timing the enabling of register input, the 

LCD output was removed. Instead the 7-Segment Displays 

on the Nexys4 board are utilized to show the resulting 

binary output of the ALU in hexadecimal. 

    The serializer code given in class is used to display the 

result of the arithmetic calculation. This component 

displays the value of the 8-bit binary result signal on 2 

segments of the 7-Segment display. It does this by enabling 

the 2 segments and then displaying the values in quick 

succession several times a second which to the human eye 

is seem as a stable output. The values displayed are 2 

hexadecimal digits, each digit representing 4 binary bits. 

The 8-bit binary remainder signal is also displayed on the 7-

Segment displays using the same method. 

III. EXPERIMENTAL SETUP 

The setup used to verify the functioning of the project 

consisted of a Nexys4 FPGA, a USB keyboard with support 

for the PS/2 protocol, the Xilinx Project software and 

initially an LCD.  

The software utilized was Xilinx ISE 14.7. This was the 

software utilized throughout the class to design, synthesize, 

implement and program the FPGA board. The configuration 

of the software was left in the default state.  

The hardware tools utilized for the project was a USB 

Keyboard. The Keyboard was required to support the PS/2 

protocol. Originally all keyboards had support for this 

protocol which has two input lines a PS2 Clock Signal, and 

a PS2 Data signal. The keyboard was connected the PS2C 

and PS2D pins on the board which are present on the USB 

HID (Human Interface Design) port of the Nexys4 board. 

Newer keyboards no longer support this, which made it 

imperative to find a keyboard which still supported the 

older protocol in order for the system to function correctly. 

Another hardware tool which was originally utilized but 

later scrapped due to issues was an LCD screen, the 

HD44780. This LCD screen was originally connected to the 

pins of PMOD Header JA which allowed the LCD screen to 

be controlled by the signals set on the board. The LCD did 

not function as expected with the backlight flickering and 

the screen displaying corrupted characters despite correct 

ASCII input. As a result the decision was made to display 

the output of the calculations on the 7-Segment Displays 

instead.  

With these components hooked up to the board, and using 

the switches to identify the register input, the system was 

able to function as predicted which is the calculation of 

mathematical outputs based on keyboard inputs. 

IV. RESULTS 

In order to verify that the system was functioning properly, 

we observed the results in several different ways. 



Initially the LCD was used to verify the results of our 

experiment, however due to no results being displayed at all, 

this feature was removed. 

The system was also tested using the LED's for feedback on 

the keyboard key code values being output, the register 

values, and the ALU result values. In order to verify that 

each component of the design was functioning properly, 

very simple modifications were performed to display the 8 

bit input and output values (key codes, ASCII, and result 

values). By mapping these to the LEDs the system was able 

to be tested for proper functionality. 

Testbenches were also run on all of the components to test 

that each component of the system functioned correctly in 

simulation. 

Using these various methods of measuring input and output 

values allowed us to design and verify that the system 

functioned as designed, and to verify that accurate 

calculations could be performed. 

The results that were compiled demonstrated the 

complexities of designing a digital calculator system. The 

calculator design was simplified to allow proper 

implementation. For instance, simply the addition of a sign 

would have significantly changed the circuitry and bit sizes 

of the inputs and outputs. In addition, both inputs and 

outputs are limited in size to minimize complexity. With 8 

bits, unsigned binary values can be at most 255 for both 

input and output. This can result in false results for addition 

and subtraction based on the inputs provided. These are 

limitations that must be communicated to the user before 

use to avoid improper results being communicated to them. 

The main complexity of the Digital Calculator was due to 

signal translation. Encoding and decoding keyboard, ASCII 

and binary values is critical to designing a proper system in 

which all components communicate in a way that other 

components can understand. Encoders and decoders were 

utilized for these tasks.  

The use of registers was also a very important part of the 

design. Storing the correct values at the correct time is 

critical to proper system functionality. If the value is stored 

too soon, or too late, the value will be incorrect or corrupt, 

and the system will not function as designed.  

Likewise, the process of calculation had to be timed 

appropriately using the control circuit's finite state machine, 

otherwise the values would either not exist or would be 

incorrect. 

All of these results were observed and accounted for in the 

final design. Throughout the testing of the system, these 

factors had to be accounted for either by careful timing, or 

by setting up switches or states to ensure that values were 

being transmitted and stored in the registers.  

The only results that were unexplainable was those 

associated with the LCD functionality. Despite our best 

efforts to display numerical values on the LCD, we were 

unable to display either input, or output on it, hence its 

removal from the design. 

V. CONCLUSIONS 

In conclusion, this project successfully demonstrated a 

working 4 function simple 8-bit calculator. This project 

demonstrated the complexity of the very simple operations 

involved in adding, subtracting, multiplying, and dividing 

two 8-bit numbers. The process requires very careful 

recording of inputs and outputs, translation of signals, and 

output of the results.  

The main functions of the calculator function as designed 

however many improvements could be made. The 

calculator could make the task of inputting data simpler so 

users would not be tasked with the work required to store 

data in specific registers. Also the calculator functions 

could be expanded to include values that require greater 

than 8 bits to represent. Finally, the data output could be 

improved to allow users to see the values they input and the 

output could be translated into decimal values that are more 

understandable. 

Overall however this project was very informative and 

interesting, informing us all as to the complexities involved 

in the design, creation, and implementation of a digital 

system. 
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