
Simple Digital Calculator

Implementing A Simple Digital Calculator Using An FPGA

Brandon Banchiu, Tasmina Ahmed, Ionatan Crisan

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: bmbanchi@oakland.edu, tasmina121@gmail.com, ivcrisa2@oakland.edu

Abstract - The purpose of this project is to

construct a fully functioning, simple digital calculator

that performs the four basic mathematical operations,

namely: Addition, Subtraction, Multiplication, and

Division of eight-bit unsigned numbers. The calculator

will consist of a Nexys4 FPGA board which will manage

all of the computation and input and output functions of

the Digital Calculator. Input will be retrieved from a

numeric USB Keypad, and output will be displayed on

the Seven-Segment Displays. In order to implement this

Digital Calculator the main functionality has been

divided into four distinct portions. The calculator will

consist of an input block which will accept input from

the numeric keypad and interpret this into a meaningful

digital signal for the application. These digital signals

will consist of two 8-bit expressible numeric inputs and

an operator (+, - , *, /). The second portion consists of

volatile memory (RAM) which will allow storage of the

inputs. The third portion will be the logical portion

which will be responsible for the actual calculation of

the result. The final portion will be the output portion

which will take the calculated result from the FPGA and

display a human-readable result on an LCD.

I. INTRODUCTION

This report covers the setup, methodology, results

and conclusions of the implementation of the Simple

Digital Calculator.

This project was to demonstrate the technical

aspects related to constructing a functioning Digital

Calculator, specifically input, calculation, and output. All

these operations require careful mapping of inputs, outputs

and careful organization in order for the calculator to

function properly. Although in normal computational

experience, the numerical computation seems a very simple

process, this project demonstrates that it requires very

careful mapping and state definition.

The origin of the idea for this project was learning

about the functionality of the Apollo Command Module

computers used in the 1960's. These computers were

constructed long before Integrated Circuits and Personal

Computers were commonplace, and as such seem primitive.

However, an explanation found online here, demonstrated

the many operations that they were able to implement were

quite complex.

Implementing this Calculator demonstrates that

despite the ordinary nature of calculating resources at our

disposal, the simple process of calculation is a very

complex one. Also, the process of data input, and data

output are significantly more complex than are observed.

This project allowed us to utilize all the knowledge

gained from the Labs in the class. Specific details were

gleaned from the ALU creation Lab (Lab 3) as to the

construction of the Arithmetic Logic Unit block. Lab 2

informed our implementation of the Multiplication feature

of the Digital Calculator. Lab 4 was utilized in constructing

the Register Array for storing ASCII values. Lab 5

informed our design of the Division feature of the ALU,

and Lab 6 provided us with a simpler way of addressing the

registers and in the construction of our Finite State Machine

in the Control Circuit.

In addition to these Lab insights and the

information learned in class about building Finite State

Machines, there were other topics that were utilized in this

project that we were required to learn. One of these was the

interfacing of a PS/2 Keyboard with the Nexys4, along with

the functioning of an LCD and its interface with the Nexys4.

This project could be applied to calculate

mathematical values for the user under any circumstances

(on the way to the moon, for instance)

II. METHODOLOGY

In order to begin designing the calculator, the first step was

to break the problem down into smaller pieces that could

each be tackled one at a time by different members of the

group. The task was broken down into seven main

components, input, input translation, register storage,

control signals, arithmetic translation, arithmetic operations,

and result output. In this way each component of the system

could be built and tested separately, and pieced together at

the end. This required defining the appropriate inputs and

outputs of each block so that upon completion, the blocks

would be known to function correctly and thus would

function as expected upon assembly.

A. Input

 The task of input was assigned to Ionatan and the

solution prescribed was using an USB PS/2 keyboard for

input. On the current Nexys4 board the original PS/2 input

was removed in favor of the more ubiquitous USB port.

Currently most keyboards function using the UART

standard where keystrokes are transmitted on demand with

the computer or receiver device polling constantly looking

for user keystrokes. This takes place asynchronously (no

clock is involved). As such, the keypad originally

purchased for this task was insufficient as it specifically

stated that it was non-synchronous (no clock signal).

Currently many computer keyboards also function in this

manner (only support the UART protocol). For this task it

was critical that a keyboard that still supported the PS/2

protocol be used. Many of the keyboards made in the

intermediate period contained circuitry for both the PS/2

and UART protocols.

 Upon finding a keyboard that met the requirements, the

next task was to retrieve the key codes. The keyboard is

connected to the Nexys4 board on the USB HID input. This

input contains 2 pins, PS2D, and PS2C. The PS2C signal

line carries the clock signals which are used to synchronize

the keyboard input. The PS2D serial signal line carries the

data bits from the keyboard. The PS/2 keyboard protocol

consists of 11 bits transacted. Initially when no key is being

pressed, the PS/2 data signal remains high (1). Upon

pressing a key, the signal goes low (0) which denotes that a

key is being pressed. Then 8 bits are transmitted in

succession which represents the key's key code. This unique

key code identifies to the device, which key (or function for

modifiers i.e. Shift) is being pressed. Upon completion of

these 8 bits, a parity bit is sent, along with a stop bit which

returns the PS/2 Data back to its idle state of high(1).

 Utilizing the code from the book that the professor

provided to us the keyboard input is captured using filters

on the PS2C and PS2D input signals. In addition a

mechanical debouncer is utilized to avoid the constant

repeating of signals due to a key press (i.e. a key press can

be registered multiple times on one press due to the way

mechanical switches work). This allows a single key code

to be registered. Since this signal is clocked, a Shift

Register is utilized to store the 9-bit key code data (with the

parity bit included). This output is then sent out of the

ps2keyboard block along with a done signal indicating that

a complete key code has been transmitted.

B. Input Translation

 Upon receiving a complete key code from the keyboard,

the next step was to translate the input into a signal that the

other components in the design could understand and use.

In the original design, an LCD was utilized to display user

input and arithmetic output. The LCD needed as an input an

8-bit ASCII signal to display the value entered. As a result,

the first step upon receiving the key code from the keyboard

was to translate the key code input into an ASCII symbol.

 ASCII stands for American Standard Code for

Information Interchange. This is a well-established standard

that represents numerical, alphabetic, and control signals in

computing devices as unique 8-bit values. Utilizing this

code allows the data being input to be usable to any device

that understands the ASCII standard representation.

 Thus upon receiving a complete 8-bit key code (by

removing the parity bit from the ps2keyboard signal) from

the keyboard, this block converts certain pre-defined

keys(numbers, operators and control signals) into ASCII

data. Along with that certain keys define an operation, or a

control state for the calculator. Thus along with sending out

an 8-bit ASCII signal, this Key code to ASCII decoder also

sends out control data bits that control the state of the

calculator [Deprecated in Final Design].

C. Registers

 The next task after the decoding of the keystrokes to

ASCII was how to store the values in preparation for their

input to the arithmetic portion of the circuit. This task was

easily accomplished with the use of 7 registers. Each

register stores the value of a particular keystroke in ASCII.

Since the calculator calculates at most an 8 bit value, the

maximum value of any input or output will be 255 (in

decimal), and thus at most three keystroke inputs are

allowed per input value (A or B). In order to simplify the

process of computation, three values are required for input.

As a result values must be padded with zeroes to exactly

three digits.

 Three of the registers are used to store the three ASCII

values of A (the first input into the Arithmetic Logic Unit),

and three registers are used to store the three ASCII values

which represent B. In addition, one register is used to store

the ASCII value assigned to the operator (+, -, *, /).

 In the original design, the control circuit was responsible

for addressing the proper register and enabling it, allowing

the register to hold the intended ASCII value. Unfortunately,

however, this caused numerous issues due to timing, and

the registers were never able to be loaded properly using the

control circuit. As a result an alternate method of enabling

the registers was attempted which utilized the switches on

the Nexys4 board as inputs. This allowed the ASCII values

to be properly stored in the correct registers in preparation

for calculation.

D. Control Circuit (FSM)

 The critical component of the calculator is the control

circuit. This component contains the Finite State Machine

that activates the calculator functionality.

 In the original design, the control circuit accepted the

input signals from the Key code to ASCII decoder (enter_in,

clr_in, op_in, digit_in) and utilized them in the finite state

machine to direct user input, store keystrokes to the

registers, and calculate and display the result. Unfortunately

this caused some significant timing issues and errors which

we were unable to correct.

 As a result the control circuit was minimized to just

contain the trigger for calculation. Once all inputs are

accurately stored in the register, the control circuit triggers

the calculation on a BTNC press. Once this occurs, the

Finite State Machine converts from an idle state to a

calculation state. Signals are sent downstream to ASCII to

Binary and an ASCII to Operator decoder that convert the

ASCII inputs into Binary inputs that the ALU can use to

calculate a result.

E. Arithmetic Translation

 While the numerical and operator values are inserted into

the registers denoted above, the Arithmetic Logic Unit will

be unable to compute the value as it does not understand

what the ASCII values represent. As a result, three decoder

blocks are built in and connected to the outputs of the

registers.

 One decoder is connected to the three registers that store

the value of input A. This decoder is designed to accept 3

ASCII values and output a single 8-bit binary value

representation of the value. This output (A) will be input to

the Arithmetic Logic Unit for computation. This decoder

also contains an enable signal that is controlled by the

Finite State Machine in the Control Circuit. This is required

to ensure that all 3 ASCII input values are populated in the

registers before the A operand is converted to binary. If not,

this would result in incomplete binary value being

transmitted to the ALU. Likewise the three registers that

store the value of B are connected to an ASCII to Binary

decoder which functions similarly.

 Finally there is a third decoder connected to the register

storing the ASCII value of the operator (+, -, *, /). This

decoder accepts as input the ASCII value stored in the

operator register and outputs a 2-bit binary signal which the

ALU will use to determine which operation to run. The

value "00" represents addition, the value "01" represents

subtraction, the value "10" represents multiplication, and

the value "11" represents division. This decoder also

contains an enable bit controlled by the Finite State

Machine in the Control Circuit to avoid incomplete values

being transmitted to the ALU.

F. Arithmetic Operations

 The next circuit component is the Arithmetic Logic Unit.

This unit is the block that does the actual computation of

results. Most of this functionality was gleaned from

previous labs.

 The Arithmetic Logic Unit (ALU) accepts as input three

values. Two 8-bit binary values (A and B) are accepted as

the operands to use for computation, and a 2-bit binary

operator signal is accepted which determines the operation

to be performed.

 The ALU performs the computation and returns 2 8-bit

binary signals. A result signal is returned which represents

the result of the computation. Likewise a remainder signal

is also returned which represents the remainder of a division

operation. This value will be "00000000" for addition,

subtraction, and multiplication. It will only contain another

value in a division operation where a remainder is returned.

 For addition the two 8-bit binary signals are added and

the resulting 8-bit binary result value is returned. If the

resulting value is greater than 8 bits, the extra bits are

removed as this is an unsigned addition. Similarly for

subtraction, the two 8-bit binary signals (A and B) are

accepted and the operation is performed as an unsigned

subtraction. For multiplication, the two operands are

reduced to two 4-bit inputs by using only the least

significant 4 bits. This is done since using all 8 bits would

result in an overflow. By reducing the inputs to 4 bits the

two operands can be at most 15 in decimal which would

result in a maximum value of 255(decimal), which is the

greatest value an 8-bit binary result could have.

 Finally for division, the ALU accepts the two 8-bit binary

operands and performs the division which results in an 8-bit

binary result signal. Also for division, the remainder of the

division operation is calculated and output as an 8-bit

binary signal.

G. Output

 The final step in the digital calculator system is to display

the output of the operation.

 In the original design, the output was designed to be

output on the LCD display. Since the LCD only accepts

ASCII input, all outputs were encoded to ASCII values.

 However due to issues with character corruption and

problems with timing the enabling of register input, the

LCD output was removed. Instead the 7-Segment Displays

on the Nexys4 board are utilized to show the resulting

binary output of the ALU in hexadecimal.

 The serializer code given in class is used to display the

result of the arithmetic calculation. This component

displays the value of the 8-bit binary result signal on 2

segments of the 7-Segment display. It does this by enabling

the 2 segments and then displaying the values in quick

succession several times a second which to the human eye

is seem as a stable output. The values displayed are 2

hexadecimal digits, each digit representing 4 binary bits.

The 8-bit binary remainder signal is also displayed on the 7-

Segment displays using the same method.

III. EXPERIMENTAL SETUP

The setup used to verify the functioning of the project

consisted of a Nexys4 FPGA, a USB keyboard with support

for the PS/2 protocol, the Xilinx Project software and

initially an LCD.

The software utilized was Xilinx ISE 14.7. This was the

software utilized throughout the class to design, synthesize,

implement and program the FPGA board. The configuration

of the software was left in the default state.

The hardware tools utilized for the project was a USB

Keyboard. The Keyboard was required to support the PS/2

protocol. Originally all keyboards had support for this

protocol which has two input lines a PS2 Clock Signal, and

a PS2 Data signal. The keyboard was connected the PS2C

and PS2D pins on the board which are present on the USB

HID (Human Interface Design) port of the Nexys4 board.

Newer keyboards no longer support this, which made it

imperative to find a keyboard which still supported the

older protocol in order for the system to function correctly.

Another hardware tool which was originally utilized but

later scrapped due to issues was an LCD screen, the

HD44780. This LCD screen was originally connected to the

pins of PMOD Header JA which allowed the LCD screen to

be controlled by the signals set on the board. The LCD did

not function as expected with the backlight flickering and

the screen displaying corrupted characters despite correct

ASCII input. As a result the decision was made to display

the output of the calculations on the 7-Segment Displays

instead.

With these components hooked up to the board, and using

the switches to identify the register input, the system was

able to function as predicted which is the calculation of

mathematical outputs based on keyboard inputs.

IV. RESULTS

In order to verify that the system was functioning properly,

we observed the results in several different ways.

Initially the LCD was used to verify the results of our

experiment, however due to no results being displayed at all,

this feature was removed.

The system was also tested using the LED's for feedback on

the keyboard key code values being output, the register

values, and the ALU result values. In order to verify that

each component of the design was functioning properly,

very simple modifications were performed to display the 8

bit input and output values (key codes, ASCII, and result

values). By mapping these to the LEDs the system was able

to be tested for proper functionality.

Testbenches were also run on all of the components to test

that each component of the system functioned correctly in

simulation.

Using these various methods of measuring input and output

values allowed us to design and verify that the system

functioned as designed, and to verify that accurate

calculations could be performed.

The results that were compiled demonstrated the

complexities of designing a digital calculator system. The

calculator design was simplified to allow proper

implementation. For instance, simply the addition of a sign

would have significantly changed the circuitry and bit sizes

of the inputs and outputs. In addition, both inputs and

outputs are limited in size to minimize complexity. With 8

bits, unsigned binary values can be at most 255 for both

input and output. This can result in false results for addition

and subtraction based on the inputs provided. These are

limitations that must be communicated to the user before

use to avoid improper results being communicated to them.

The main complexity of the Digital Calculator was due to

signal translation. Encoding and decoding keyboard, ASCII

and binary values is critical to designing a proper system in

which all components communicate in a way that other

components can understand. Encoders and decoders were

utilized for these tasks.

The use of registers was also a very important part of the

design. Storing the correct values at the correct time is

critical to proper system functionality. If the value is stored

too soon, or too late, the value will be incorrect or corrupt,

and the system will not function as designed.

Likewise, the process of calculation had to be timed

appropriately using the control circuit's finite state machine,

otherwise the values would either not exist or would be

incorrect.

All of these results were observed and accounted for in the

final design. Throughout the testing of the system, these

factors had to be accounted for either by careful timing, or

by setting up switches or states to ensure that values were

being transmitted and stored in the registers.

The only results that were unexplainable was those

associated with the LCD functionality. Despite our best

efforts to display numerical values on the LCD, we were

unable to display either input, or output on it, hence its

removal from the design.

V. CONCLUSIONS

In conclusion, this project successfully demonstrated a

working 4 function simple 8-bit calculator. This project

demonstrated the complexity of the very simple operations

involved in adding, subtracting, multiplying, and dividing

two 8-bit numbers. The process requires very careful

recording of inputs and outputs, translation of signals, and

output of the results.

The main functions of the calculator function as designed

however many improvements could be made. The

calculator could make the task of inputting data simpler so

users would not be tasked with the work required to store

data in specific registers. Also the calculator functions

could be expanded to include values that require greater

than 8 bits to represent. Finally, the data output could be

improved to allow users to see the values they input and the

output could be translated into decimal values that are more

understandable.

Overall however this project was very informative and

interesting, informing us all as to the complexities involved

in the design, creation, and implementation of a digital

system.

VI. REFERENCES

[1] Haskell, Richard, and Darrin M. Hanna. Digital Design

Using Digilent FPGA Boards. Rochester Hills, MI:

Learning by Example, 2009. Print.

VII. DIAGRAMS

Datapath Circuit

Top-Level Design

