
Unsigned Calculator

List of Authors (Sivasakthi Muthukumar, Polly Jane Bates, Gerard Griest, Nikki Lipski)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: smuthukumar@oakland.edu, pjbates@oakland.edu, gtgriest@oakland.edu, nlipski@oakland.edu

Abstract—It is possible to do four functions such
as addition, subtraction, multiplication, and
division by hand with positive integers as large as
255, but this is very cumbersome. The goal of the
project is to create a simple unsigned calculator
that performs four operations with 2 8-bit
unsigned inputs. Using many circuits learned from
class, such as full adders, counters, and decoders,
the project goal is achieved. Our simple unsigned
calculator requires an input keyboard and outputs
data in BCD, which will be fed to the
seven-segment displays on the Nexys-A7 board.

I. INTRODUCTION
The main goal of this project is to make an

unsigned calculator that will perform addition,
subtraction, multiplication, and division given two
unsigned 8-bit binary numbers. The numbers will be
inputted through a keyboard. Calculators are essential
in order to accurately solve algebraic problems. They
help eliminate mistakes that often occur as a result of
human error, as well as save time during calculations.
The information needed in order to create the
addition, subtraction, and multiplication functions on
the calculator was taught in class. Contrarily, the
steps needed to create the division function on the
calculator needed additional research. The calculator
required several components covered in class such as
counters, shift registers, registers, and decoders.

II. METHODOLOGY

A. Goal

The objective of this project is to create an
unsigned calculator that shows calculations on the
7-segment display of the Nexys-A7 board. The input
is taken from a keyboard, and the calculated output is
displayed on the FPGA board. Coding wise, this is
achieved through the block diagram displayed below.
The block diagram can be further broken down into
individual blocks.

B. Block Diagram

C. Keyboard[1]
The keyboard serves as the controller that

takes in and records the user input. When a key is
pressed and held on a keyboard, the protocol is
scanned, and the scan code runs once every 100ms to
measure whether the key has been released by the
user. Once the key is released, a key-up code is sent,
as well as the recorded scan code. This component
allows the system to understand what and when a key



is pressed and released. Specifically, for this project,
the numbers along with the operators from the
keyboard’s keypad were used.

D. Keyboard Decoder
The keyboard decoder takes in the scan code

from a keyboard and differentiates the input key from
data (‘0’ or ‘1’) and an operation (+, -, *, /) value.
When the key-up value from the keyboard is a logic
high, the scan code will go through one of two
decoders- the data and operator decoder. The data
decoder decodes the scan code as either a ‘1’ or ‘0’
for the 8-bit binary inputs. The default setting for this
decoder is to output a ‘1’ should the user press a
wrong button. The output of this decoder is sent to a
16-bit left shift register which holds the two 8-bit
binary input values. The operator decoder decodes
the scan code as a two-bit value that corresponds with
one of the four operators. These two bits are sent to a
2-bit register for storage. The default operation is
addition if a non function key is pressed.

E. PS/2 Keyboard Controller[1]
The PS/2 keyboard input controller registers

the inputs entered into the calculator. These values
are read as scan code which is then processed in the
keyboard decoder. The calculator can have one input
entered at a time. So, to accomplish this, a finite state
machine must be utilized.

F. Operation Blocks[1]
Addition is achieved using multiple full

adders in series with each other. As in the diagram
below the respective inputs (x and y) are inputted into
each full adder and the respective output (s) are given
out. X(n) and Y(n) would go in full adder (n), each
one giving out a different cout which becomes full
adder(n+1)’s cin. The full adder itself has a boolean
equation of s = (x XOR y) XOR cin) and cout = (x
AND y) OR (x AND cin) OR (y AND cin). The
initial cin needs to be set to ‘0’.

Subtraction is much the same as addition
using the same full adders in series, however, there is
a slight alteration in the inputs as the y input needs to
be negated and the initial cin needs to be set to ‘1’ in
order to get the proper output. This negation and
setting cin to ‘1’ is equivalent to finding the 2’s
complement of the input y. From there, subtracting y
from x is treated the same as the addition of the 2’s
complement of y to x. Thus the rest of the subtraction
process will mirror the addition process. If the
difference between the two inputs is negative, the
output on the display will be incorrect, however, if
the binary equivalent of the output is considered in
2’s complement the result is consistent with the
negative difference.

Multiplication is carried out by an array
multiplier. The product requires at most 16 bits. The
array multiplier is an asynchronous circuit that takes
in two 8 bit unsigned values and computes a 16 bit
product. The propagation delay with this design is
smaller compared to the combinational multiplier or
iterative multiplier.

Division is carried out with an iterative
restoring design, although the remainder is not
important for the function of this calculator. This
design is synchronous and requires a finite state
machine, two left shift registers, a subtractor, and a
register. When the divisor is 0, the output will be the
maximum valued output possible. If the quotient is
not an integer, the result is the floor function of the
quotient. The division block also generates a “done”
pulse when the final quotient has been reached.
Division was not covered in class, however, Lab 6 (a
square root function) follows a similar design. The
division circuit was acquired thanks to Dr.
Llamocca’s design[3].

G. Multiplexer
The operations for addition, subtraction,

multiplication, and division are inputted into the



MUX as the select lines. The MUX will determine
which operation to conduct depending on the two bits
generated from the operation decoder. Addition will
be indicated by the “+” key on the keyboard which
will correspond to select lines equal to 00, subtraction
will be indicated by the “-” key and 01, multiplication
will be indicated using the “*” key and 10, and
division will be inputted using the “/” key and 11.

H. Binary to BCD Converter[1]
The binary to BCD converter receives the

result of the computation and transforms the value to
BCD. The converter loads in the value to be
converted depending on the state of the FSM.

I. Counters[1]
Counters were used to track how many bits

of the input had been entered. The mod 8 counter was
enabled by the FSM and the signal generated when
the counter reached the maximum count of 8 (z) was
fed back to the FSM. The actual count of the counters
was not of importance except for debugging.

J. Finite State Machine

All the major operations required the use of
a Finite State Machine (FSM) in order to properly

give the correct inputs to the corresponding
components at the proper times. The FSM receives
the key-up signal from the keyboard, a done signal
from the divider, a clock signal, resetn, and the z
from the mod 8 counter. The FSM outputs enable
the shift register, counter, operation register, binary
to BCD converter, and divider. For this calculator,
four states were defined from S0 to S3.

S0 is the beginning state and is initiated
when the reset button is pressed. In S0, whenever a
key is pressed on the keyboard, the mod 8 counter
increases its count and the input binary value is
shifted into the shift register. Once 8 bits
representing the first input are recorded, the state
becomes S1. In S1, the operator is recorded and
stored in a 2-bit register. After the operator is
recorded, the circuit enters S2. S2 operates the same
way as S0, receiving 8 bits of the second input and
storing them in the shift register. After the second
8-bit input is typed in, S3 begins. In S3, the divider
is enabled, and once the divider has finished, the
binary-to-BCD converter is enabled. If the converter
is enabled at the start of S3, it will capture an
incorrect output value, as the divider will not have
had time to reach the final answer. As opposed to
most FSMs seen in class, the FSM used in this
project does not loop back to an earlier state. It only
resets to S0 when the resetn equals 0, which can
only occur with a manual button press.

K. 7-Segment Display/Serializer[1]
The 7-segment hex display takes the BCD

value and converts them to its respective
seven-segment display values. This is achieved via
with-select statements that pair the BCD value input
with a 7-segment value output. That value will then
display as the decimal value on the board. The
7-segment display on the Nexys-A7 board is inverted
logically, as a “0” will result in an “on'' segment, and
a “1” will be an “off” segment. The display has 7
segments (a,b,c,d,e,f,g), each turning on or off
corresponding to the 7-bit active low input.
Additionally, to display unique digits on multiple
seven-segment displays, the data must be multiplexed
using a serializer. For example, to display “1234” on
4 seven-segment displays, the “1” is turned on for
only one display momentarily, then the “2” is turned
on and off on the next display. This continues with
the “3” and “4”. If the displays are turned on and off



fast enough, the human eye will not notice that only
one digit can only be displayed at one time; it will
appear as if all the seven-segment displays are
perpetually on.

III. EXPERIMENTAL SETUP
To make this calculator, a Nexys-A7 board

had to be paired with a keyboard. Each input was put
into the keyboard, while the outputs appeared on the
board’s display. The two 8-bit input values will be
displayed on the Nexys-A7 board using the 16 LEDs,
where a ‘1’ is represented by a LED that is on, and a
‘0’ is represented by an LED that is off. The operator
that is stored will be displayed using the RGB LEDs
on the board. The addition operator is symbolized
with the RGB LEDs off, the subtraction operator will
light up green, the multiplication operator will light
up dark blue, and the division operator will light up
light blue. The implemented software for this
calculator is Vivado, which uses the programming
language VHDL. This code would be uploaded to the
Nexys-A7 board in order to implement the calculator.
The expected result is that if one were to input values
on the keyboard along with an operation, then the
correctly calculated solution would appear on the
board’s display.

Several versions of the project were created
during development. One version served to check the
math functions and multiplexer as it consisted of the
four math blocks and the multiplexer. A second
version tested the input process and FSM. This circuit
contained the FSM, register for the operation, shift
registers, and keyboard decoders. The third iteration
was the final circuit without the keyboard reader.
This circuit helped debug the input process, math
process, and output process collectively. Test benches
were developed for each of these intermediate
designs to confirm their functionality.

IV. RESULTS
As intended, the unsigned four-function

calculator was able to calculate all four functions
being fed into it and produce a correct and viable
result on the 7-segment display. Two 8-bit unsigned
numbers and the proper operation were put into the
keyboard while a decimal representation of the
calculated BCD values was displayed on the
7-segment displays. This was achieved via an FSM in
tandem with the PS/2 keyboard controller. The four

functions worked as expected with the exception of
subtraction when the difference was negative. This
result was expected as no steps were taken to
accommodate negative numbers in this design. The
most difficult part of designing the calculator
stemmed from converting the final answer to BCD.
The binary to BCD converter was not understood
well initially and was assumed to periodically check
the input value. This resulted in the output on the
seven-segment displays to read all zeros. After taking
a closer look at the design of the converter, the
converter only captures the input once in its
beginning state. Thus, the converter needed to be
enabled once all the math blocks had finished their
calculations. A video demonstration of the calculator
can be found using this link
https://youtu.be/Fa8NBjneTu0.

V. CONCLUSIONS
In conclusion, this project has been very

beneficial for applying all the information that has
been learned during this semester. By utilizing the
material that was taught during classes and labs, in
addition to supplementary research, this calculator
was able to function properly. The calculator was
made by using concepts such as a finite state
machine, a serializer, and a counter, among other
components. Physical components used for this
project included the Nexys-A7 board and a keyboard.
The calculator can accurately add, subtract, multiply,
and divide 8-bit unsigned numbers. Further
improvements to the calculator could include the
ability to edit the input before calculation, adding the
ability to accept larger numbers, negative numbers,
and hex/decimal numbers, improving the result for a
negative difference, or adding more functions. Some
of these improvements would require a simple tweak
to the existing design while some would require a
good amount of reconstruction.

VI. REFERENCES
[1] Llamoca, D. (2013). VHDL coding for fpgas.

Retrieved April 12, 2023, from
https://www.secs.oakland.edu/~llamocca/VHDLf
orFPGAs.html

[2] Master XDC file for Vivado Designs. (n.d.).
Retrieved April 12, 2023, from
https://moodle.oakland.edu/pluginfile.php/83454
75/mod_page/content/6/Nexys-A7-100T-Master.x
dc

https://youtu.be/Fa8NBjneTu0
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://moodle.oakland.edu/pluginfile.php/8345475/mod_page/content/6/Nexys-A7-100T-Master.xdc
https://moodle.oakland.edu/pluginfile.php/8345475/mod_page/content/6/Nexys-A7-100T-Master.xdc
https://moodle.oakland.edu/pluginfile.php/8345475/mod_page/content/6/Nexys-A7-100T-Master.xdc


[3] Divider Implementation. (n.d.). Retrieved April
17, 2023, from
https://www.secs.oakland.edu/~llamocca/dig_libr
ary/arith/Divider%20Implementation.pdf

https://www.secs.oakland.edu/~llamocca/dig_library/arith/Divider%20Implementation.pdf
https://www.secs.oakland.edu/~llamocca/dig_library/arith/Divider%20Implementation.pdf

