
Digital Security Alarm System

ECE2700 Final Project Report

List of Authors (Mario Cali, Ronza Younan, William Pham, Irvin Watson)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mariocali@oakland.edu, ronzayounan@oakland.edu, xuanpham@oakland.edu, irvinwatson@oakland.edu

Abstract— In this project, students use skills taught in ECE 2700

Digital Logic Design and preceding classes to create a digital

system utilizing FPGA and Vivado to code VHDL. The students

decided to create a digital alarm system that will sound when a

motion sensor is triggered and can be disarmed using a four-

switch combinational code. The primary goal of this project is

to dissuade intruders. The creation of this digital system led to

several findings and additional suggestions.

I. INTRODUCTION

This digital motion alarm system will necessitate several

electrical components in addition to software programming.

This project will make use of a Nexys A7 100T FPGA, and

buzzer amplifier, an HC-SR501 PIR (Passive Infrared)

motion sensor module to detect motion within an area, an

LED, an active buzzer, a micro breadboard, and jumper

wires. The code will be written in Vivado VHDL 2019.1.

The goal of this study is to better understand and duplicate

the operation of alarm systems. Another incentive is

knowing whether there is an intruder, or someone present

within a room for security concerns, with the intention that a

buzzer will stop them before they steal anything.

This project can help to improve security and safety by

sounding an alarm whenever there is movement in an area

where intruders are not welcome. This project incorporates

many of the concepts covered in this semester thus far. To

be capable of putting specific components into code, one

must first understand how they work. It is critical essential

students not only grasp how to code components in VHDL

using Vivado, but additionally how to connect these parts

using a top file and construct a comprehensive testbench to

mimic his or her code.

The abilities required for performing these tasks were

thoroughly covered in the course and were heavily applied

during this project. Counters, decoders, and deterministic

finite systems are examples of important Vivado coded

components that were taught in class. To complete this

project, the students needed to study a few things on their

own. Students required to read the Nexys FPGA

documentation to figure out what the I/O pins on the FPGA

were called to discover them in the xdc restrictions file.

Understanding how to use a PIR sensor, how to properly

feed voltage to the FPGA without destroying the board, and

how to properly feed voltage to the FPGA are all challenges

of this project. Voltage should be fed from the FPGA board

to a buzzer. It is also critical that students understand how to

wire simple circuits. This project's uses are applicable in any

case where a motion sensor alarm is required.

II. METHODOLOGY

A. System’s Goal

This project is supposed to replicate a home security digital

alarm system in order to prevent any intruders from

breaking in. The alarm is activated only in the case of

motion detection by a Passive Infrared sensor (PIR sensor).

The way it works is that the user has three attempts in order

to get the code right. The code has five bits and is controlled

by four switches (SW[3]-SW[0]) and also a button (CNT

BTN) that needs to be held at the same time. So, the button

acts as our enter key in a security alarm while the four

switches act as the code to be inserted. The correct code is

11001. After every attempt, the user has 8 seconds in

between in order to put in another code. If the user guesses

the right code in any of the attempts, the normal state is

restored, and everything goes back to normality. If the user

runs out of attempts, then the buzzer is activated and will

make a sound until the right code is inserted again. The

setup and the wiring of the Nexys-A7 board is shown in

Figure 1 below.

Figure 1: Nexys A7 100T board layout

B. Implementation

In order to implement this system, our group started picking

out some components like counters, a decoder, a finite state

machine and a BCD counter in order to use them. We had

some different ideas how we were going to do this process

but ultimately the goal was the same, which was a digital

security alarm. We tried doing this project with a

comparator where the code inserted is compared to the

actual code saved in a state machine but decided to go for

this design better as it was less complex and had the same

function. All of the components had a specific task that

needed to be done in order for this system to work. Figure 2

shows how the circuit was designed and implemented.

Figure 2: Block Diagram of the System

C. PIR Sensor/Buzzer

The main components that represent this digital alarm

system are the PIR sensor and the buzzer. A Passive Infrared

sensor (PIR sensor) is a type of sensor that uses infrared

temperature to detect any kind of motion and transmit that

motion to the FPGA board in this case. So, this sensor only

picks up radiation which is released by the human body. It

has a wide lens and a wide beam, which makes it able to

pick up radiation in a range of 180 degrees. The motion

pickup marks the start of the digital alarm system. Before

using this type of sensor, its output was measured using a

voltmeter to make sure it doesn’t damage the Nexys A7

board. The board only supports a maximum input of 3.8V,

so the output of the PIR sensor which acts as the input for

the board was measured. After successful measurements, it

came out to be around 3.31V, which meant that it was safe

for the board to use this sensor. Figure 3 represents the

motion sensor that was used to successfully complete this

project. On the other hand, an active buzzer is also being

utilized. The buzzer releases a sound and acts as a way to

alarm everyone that someone is intruding into a house.

Since the buzzer is active, it needs a high input from the

FPGA Nexys-A7 board in order to get activated.

Figure 3: PIR Sensor Used in the Project

D. Finite State Machine (FSM)

Our project was mainly based on the state machine, where

everything is based on the state that we are in. Figure 2

represents the Moore state machine, where each output is

dependent solely on the present state and not the inputs.

This state machine mainly relies on the code input from the

switches and the button and the outputs from the counters.

The output goes in the 7-segment screen and in the RGB

LED of the FPGA board. The state machine has 8 different

states, and each state signifies what is going on with our

circuit. The first state is the normal state or the state that

there are still three attempts left for the user to insert. In

order to go from the first state to the second, the code must

be wrong (not 11001) and motion must be detected. If the

code is correct or no motion is detected, then the system will

stay in the normal state. Once in the second state, then a

counter is activated and when the output is high then the

code will get checked again. So, in simpler terms, there is a

certain timer that the user has before the code needs to be

inserted. If the code is correct, then normal state should be

regained. Otherwise, the user goes to the third and last

attempt before the buzzer is activated which is represented

by state 3. State 3 has the exact same layout as state 2 where

another counter is added to the system and the user has the

same amount of time as in the second attempt in order to put

in the correct combination. If the code is correct, normality

is brought upon the system and state 1 is attained.

Otherwise, state 4 is activated which marks the start of a

BCD counter that counts down from 3 to 0. States 4 through

7 acts as a BCD counter with the output of a 1 second

counter separating each of the states from each other. So,

this countdown activates the buzzer, and the code cannot be

inserted through this stage. After the countdown has been

finished, state 8 is achieved. In this state, the buzzer will get

activated and will not turn off until the right code is

inserted. If the right code is inserted, then everything goes

back to normal state 1. The output in each state is displayed

in the 7-segment showing the user the number of attempts

left after each try and also counting down to let the user

know that the counter is activated. The image below

represents the state machine of our system.

Figure 4: Finite State Machine of the project

E. Counters/Decoders

Two counters and a BCD counter were used in this project.

It was decided for the two counters to be 8-second counters

in order to prevent debouncing from happening and also

create a realistic situation that would be found in the real

world. As explained in the finite state machine diagram,

these counters acted mainly acted as components to move

from one state to another in the FSM. The BCD counter was

also implemented inside the FSM, where a countdown from

three to zero appears on the 7-segment LED screen to let the

user know that the buzzer is getting activated. As for the

decoder, it is also connected to the FSM and its input is the

output of the FSM. The decoder converts the output of the

FSM into 7-bit data that is shown in the 7-segment LED

screen. This input of the decoder is also shown in the FPGA

LED’s.

III. EXPERIMENTAL SETUP

For this experiment setup, the hardware that was used was

the Nexys A7-100T board, Breadboard, PIR sensor, Active

Buzzer, LED’s and Wires. The breadboard was used to show

the LEDs lighting up during the correct states. On the

breadboard was the buzzer, LEDs. When the last attempt is

wrong, the buzzer would sound off. The PIR Sensor is used

to activate the actual alarm. The PIR Sensor picks up motion

and starts looking for 4-bit code inputs from the Nexys A7

board. The wires are used to connect the buzzer on the

breadboard, to the Nexys board, and the PIR Sensor

connected is also connected to the Nexys board. The

expected results were to activate the PIR sensor, test

different 4-bit codes, and also test to see if the buzzer goes

off after all attempts are used.

IV. RESULTS

After several tries and running the simulation with the

project in the lab, we finally got the final results as expected.

Figure 5: Testbench simulation with the project results

We tried it on the whole project with the buzzer and Nexys
A7 100T board. Simply if the simulation worked well and

counted exactly as we expected, the sensor caught up with

the motion and it started to count. We tried every single case

as stated on the FSM. The counter started to count, and the

buzzer went off if there is no code or the wrong code is

entered. Every number is displayed on the 7-segment

display. The link below is the demonstration of the alarm

clock showing the result of every case of the FSM and the

buzzer goes off:

https://www.youtube.com/watch?v=87n0txZ7Uw4

CONCLUSIONS

This final project is a perfect wrap-up for a semester of

learning about digital logic design. Making one real alarm

clock system develops our skills in VHDL designing and

coding. It's a step that lays important groundwork for

stepping out in real life. We can make a sensor digital

security alarm, and based on that we can also make so many

things with sensors such as an automatic door, an automatic

light system when it turns off all the lights while detecting no
heat motion, and even auto driving for automotive. Most

importantly, we want to improve and develop our digital

security alarm system. The downside of our system is when

the sensor detects motion, we need to hold the button in

order to enter the code and reset it. We can switch from

holding the button to turning on/off the switch and making it

an input. The first four switches are input codes and the fifth

switch acts like an enter button. We want to develop more on

the alarm in order to use the full capacity if we have more

time and the right equipment. The first thing is an on/off

button that we want to add. The second thing is a door that

acts like a trigger to turn on the alarm. The idea is to use two

plate metals stuck to each other. If the metals are stuck,

which means there is no one at home and the alarm won't

start if it detects a motion that is not from people such as pets

and so on. The alarm will start to work when the metals are

separated which is someone opens the door. The third thing
we want to add is the sound effect. It announces people for

each try and calls out a warning if the person is not a

homeowner and it leads to the last thing, we want to add is

the system automatically calls the police when it knows there

is a stranger which supposes to appear as red and blue LEDs

flash on our system. We wanted our project to relate to real

life as much as possible.

REFERENCES

[1] D. Llamocca, “VHDLforFPGAs,” VHDL Coding for FPGA’s.

[Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[Accessed: 23-Mar-2023].

[2] “What is a PIR Sensor?”, Quick and Easy Lightning. [Online].
Available: https://quickandeasylighting.com/what-is-a-pir-sensor/.

[Accessed: 24-Mar-2023].

[3] D. Llamocca, “Unit 7–Introduction to Digital System Design,”
Reconfigurable Computing Research Laboratory

(RECRLab),Oakland University. [Online]. Available:
https://www.secs.oakland.edu/~llamocca/Winter2022_ece2700.html.

[Accessed 23-Mar-2023].

https://quickandeasylighting.com/what-is-a-pir-sensor/

