
Chrome Dino Game Using an FGPA and VGA

Joey Volcic, Dylan Wismont, Modathir Bougrine, Andrina Toma
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: volcic@oakland.edu, dwismont@oakland.edu, mbougrine@oakland.edu, Andrinatomatoma@oakland.edu

Abstract- the aim of this project is to use our

knowledge of VHDL and expand on it to create a
version of Google’s “No Internet” dinosaur game on
an Nexys A-7 FPGA board. There is one input that is
used to initiate the game and interact with the
dinosaur and that is accomplished using a button. The
dinosaur; therefore, will either be in motion with the
cactus appearing to approach him or he will be
immobile due to a collision with the cactus. This paper
covers the methodology and challenges faced during
implementation. The results of the project
demonstrate the successful creation of a functional
game that can run on an FPGA development board.

I. INTRODUCTION

Google’s “No Internet” dinosaur game is a simple
game that helps you pass the time when you lose internet
connection while browsing the web. The player has one
task, jump over the incoming obstacles. As the player
avoids more obstacles their score increases, however the
speed of the player also increases making the game
progressively harder. Once the player inevitably fails the
score is displayed and they have the option to restart the
game.

The goal of our project is to recreate the simple “No
Internet” game using an FPGA and a VGA display.
FPGAs are a particularly useful tool for prototyping and
testing since they let you create complex circuits without
the need to wire up individual gates. To program the
FPGA, we will be using Vivado’s VHDL development
environment. To implement this game on our FPGA we
will be utilizing the Nexy’s A-7 development boards
onboard buttons to control the game state and the actions
of the dinosaur, we will be using the VGA port to display
the game to the user.

II. METHODOLOGY

To design this circuit, we broke the problem down into
blocks making the function of the circuit easier to
understand. These blocks were then connected to create
the desired output.

Figure 1. Block Diagram of Main Components

A. Game State Machine

The game state machine is used to keep track of the
current screen that is being displayed. There are three
total screens that we need to replicate to make this game.
The first is the starting screen, which is displayed when
the player first opens the game. In this state the game
should be paused with the cactus on the other side of the
screen. The second state is the active game state, this
occurs after a button input from the user. When in this
state the obstacles start to move and the state ends when
the player collides with an obstacle. Which switches the
game into the game over state where the dinosaur and
cactus are frozen in their current position. This is done by
setting the dino and cactus resetn to 0 which stops them
from moving. The user can then choose to play again by
clicking the button, this brings the game back to the active
game state. This cycle will continue as long as the player
keeps pressing the button.

Figure 2. Game Algorithmic State Machine Diagram

B. VGA Control

The main output from the circuit is a VGA signal. A
VGA signal requires 14 sub-signals to create a picture on
a screen. Twelve of these are used to determine the
current pixel's color, four bits for red, four for green, and
four for blue. The other two signals are horizontal sync
(HS) and vertical sync (VS); these are responsible for the
horizontal and vertical position of the next pixel displayed
on the screen. These sync counters also allow us to
retrieve the correct pixel color from the ram [1].
Accurately determining these values is done using a series
of counters running off a 25MHz clock. This clock was
chosen because we want our refresh rate to be 60 frames
per second, with a 640 by 480-pixel display area. Due to
the front and back porch restrictions of VGA, which gives
tube displays the time for the electron beam to speed up
and slow down, to account for this, we need a resolution
of 800 by 525. Hence, 25MHz / (800 * 525) is roughly 60
frames per second. When we are not in the 640 by 480-
pixel display range we cannot write any pixel colors to the
screen.

Figure 3. Display Area with porches

C. Dino Control

To recreate the game's feel, we needed to make the
dinosaur look and behave like the dinosaur from the
game. We created the dinosaur's look using ms paint to
draw a picture of it, commonly known as a game sprite
and then converted it into a text file using Matlab [1].
These text files were loaded onto the ram, letting us
retrieve the images later.

Figure 4. Dinosaur Sprites

Then we created the behaviors of the dinosaur:
standing, running, and jumping. Standing was the
simplest of the cases, as we just needed to display a sprite
of the dinosaur with both feet on the ground and stay in
that position. To animate running, we cycled between two
sprites of the dinosaur, one with the right leg up and one
with the left leg up. Finally, we created the jumping
animation. Instead of changing the sprite, a height value
was incremented to animate the dinosaur. These
animations were controlled using a finite-state machine
constrained by two asynchronous inputs that determined
what the dinosaur should do next. Controlling these inputs
asynchronously reduces the feeling of input lag for the
user. If the button is pressed, the jump animation is
triggered, and animation changes are stopped if a collision
is detected

Figure 5. Dinosaur Control Algorithmic State Machine

Based on the outputs from this state machine, we
can select the correct sprite to be displayed on the screen
using a mux tied to the output of all the ram blocks; since
the ram blocks all have the same ram address line, they all
output the same pixel position making this technique
possible. Finally, the height of the dinosaur is sent out to
the display signal control block for further position
calculations.

Figure 6. Block Diagram of the Dino Control Component

D. Cactus Control

In this version of the dinosaur game, the cactus
control is composed of the cactus state machine and the
cactus Ram memory. The cactus state machine is a
component of the VHDL code that defines the behavior of
the cactus obstacles. The state machine controls the
movement of the cactus, transitioning between different
states based on certain conditions. For example, at first
the cactus is generated in an “offscreen” position or
inactive state. Then, once the position tick is initiated, the
cactus reaches the edge of the screen, then it transitions
into the active state. Lastly, the cactus starts moving
towards the dinosaur. Now, if the cactus collides with the
dino, the collision detection is initiated and the game
ends. Alternatively, if the player is successful in jumping
over the obstacle; in our case the cactus, the state machine
transitions back to the “offscreen” state and generates a
new obstacle. This state machine is designed to challenge
the user and requires quick reflexes and precise timing to
avoid the obstacles.

Next, the Ram memory is a storage established
in the FPGA through VHDL code to store our image of
the cactus. First, the image of the cactus is saved in the
VHDL code as a series of binary values that are
representative of the pixels of the cactus. These values are
created using a conversion code on MATLAB which
converts the image pixels into a binary format that can be
stored easily in a RAM established in our code. By saving
the cactus image this way, we are able to easily generate
and display the cactus on the screen when needed making
the game engaging and enjoyable.

Figure 7. Cactus Algorithmic State Machine

E. Collision Detection

The collision detection between the dinosaur and the
cactus is a critical component in the implementation of
the dinosaur game in VHDL. The collision detection
process involves checking whether the dinosaur sprite and
the cactus sprite overlap in any way; this later is done by
comparing the positions of the two sprites while the game
is running.

In our VHDL code, we execute the collision detection

using an “AND” logic gate (figure 8), where if parts of
the two sprites overlap in any way, then the collision
detection is initiated; the game is paused and the area
where the collision happened is highlighted on the screen
in red as seen in figure 9. The code for the collision
detection is incorporated in our VGA control Ram.

Figure 8. Collision Detection Logic

Figure 9. Visible Collision Indicator

F. Other Components

To achieve the final goal of this project in a timely
manner, parts of our project were sourced from pre-

existing code. We used VGA_12_bit [1] and its
subcomponents as a starting point to build off.

III. EXPERIMENTAL SETUP

In the process of making this game, it was vital
to simulate state machines and their components.
However, it was very difficult to devise a way to simulate
the entire project using the simulation in VIVADO. So,
for that part, we decided to simulate the game using the
VGA and solve any issues we encountered.

Simulating the different state machines and controls
individually using VIVADO helped us see if our
components are able to achieve the necessary functions.
While testing these components, we could fix if there
were any issues and instantly re-simulate accordingly.

IV. Results

The VHDL implementation of Google’s Dino
game was successful. We managed to effectively create a
functional and functioning game that could be played on
an FPGA development board. The game was able to
generate cactus obstacles and move the dinosaur
character; furthermore, the game was able to detect
collision between the cactus and the dinosaur.

Because of the chosen refresh rate of 60 fps, the
game was able to run smoothly and consistently; which
provided an engaging gaming experience for the users.

However, we faced many challenges in making
this game. The first challenge was to optimize the game
logic and components to ensure that it could run
efficiently on the limited resources of the nexys7 board.
Another challenge was controlling the position and the
motion of image to be displayed on the screen; therefore,
debugging the VHDL code was a time-consuming process
and requiring careful testing and verification since we had
to synthesize, implement, generate bitstream, and
program the board every time we made any change to the
VHDL code.

V. CONCLUSIONS

In conclusion, the team was able to successfully
recreate Google's "No Internet" dinosaur game using
VHDL and an FPGA board. The Nexys A-7 development
board's onboard buttons were used to control the game
state while the VGA port was utilized to display the game
to the user. By breaking down the problem into smaller
components, the team was able to develop a game state
machine to keep track of the current screen, a VGA
control system to accurately determine the location of
pixels, and multiple finite state machines to control the
position and behavior of the obstacles and dinosaur. The
final implementation provided users with a challenging
gameplay experience that required quick reflexes and
precise timing, just like the original game.

Overall, the project showcased the team's ability
to work with complex hardware and software systems, as
well as their skills in problem-solving and programming.
The successful recreation of the game demonstrated their
proficiency in VHDL programming and FPGA board
development. Additionally, the project highlighted the
importance of breaking down complex problems into
manageable pieces, which can be solved individually and
then integrated into a complete solution. The team was
able to apply this methodology effectively in developing
the various components of the game. In conclusion, the
project was a great success, and the team members gained
valuable experience and knowledge through their
participation in it.

REFERENCES

[1] D. Llamocca, "VHDL Coding for FPGAs," 01 04 2023.
[Online]. Available:
http://www.secs.oaklsnd.edu/~llamocca/VHDLforFPGAs.html..

[2] D. Graham, "T-Rex Runner Game in Scratch," 14 07 2020.
[Online]. Available:
https://deejaygraham.github.io/2020/07/14/trex-runner-in-
scratch/. [Accessed 10 03 2023].

