8-Bit Signed Calculator with Keyboard Input and Hexadecimal Display
EGR 2700 Final Project

Evan Kornhaus, David Kosa, France Zaytouna, Giuseppe Rizzo
Electrical and Computer Engineering Department School of Engineering and Computer Science Oakland
University, Rochester, M1
evankornhaus@oakland.edu, dkosa@oakland.edu, fzaytouna@oakland.edu, grizzo@oakland.edu

Abstract
This project is an 8-bit signed calculator that is capable of
four operations: addition, subtraction, multiplication, and
division. A USB keyboard is used to allow the user to input
data easily, and a 7-segment display will output the result
for the user to view. The resulting answer will appear on the
Nexys A7 FPGA board as a 16-bit, two’s complement
signed number in hexadecimal form. The inputs and outputs
can be both positive and negative.

Top File

8-Bit Left shift B "
Reg . 40-Bit Left Shift Register

B

Calculator Finite State
Machine

%] @] @

Figure 1; Top Fil

ign of the 8-Bit Sign al

I. INTRODUCTION

The purpose of this project is to create an 8-bit signed
calculator that can perform addition, subtraction,
multiplication, and division. Many of the topics covered in
previous labs have helped to prepare for the creation of this
calculator. Specifically, labs 2 and 3 helped to build the
arithmetic circuits for subtraction and multiplication, as the
designs presented in those labs can be extended quite easily
to 8-bits. Lab 4 is very similar to the design of the calculator
architecture, in that it is composed of four separate circuits
connected through a multiplexor (MUX). The calculator
takes five inputs which are entered by a USB keyboard; the
outputs are displayed as four hexadecimal numbers on a
7-segment display.

II. METHODOLOGY

As mentioned previously, the basic outline of the
calculator is composed of four arithmetic circuits, one for
each of the aforementioned operations, all of which are
connected through a MUX. A standard USB keyboard was
used to allow the user to input particular values and
operations. This required the use of the PS/2 Interface code
that was made available by Dr. Llamocca in the Unit 7 notes
[1]. A scan code to hexadecimal encoder as well as a scan
code to operator encoder were created to convert the
selected keyboard values used for calculations (0-F, +, -, .,
/). The 7-segment display on the FPGA was used to display
the signed hexadecimal result. To display each hexadecimal
place at the same time required the use of the 7-Segment
Serializer code, which was also made available by Dr.
Llamocca in the Unit 7 notes [1]. A finite state machine
(FSM) was created to allow control of the datapath circuit
through the use of a USB keyboard. The datapath circuit
contains all circuits mentioned prior, as well as two counters
and two parallel access shift registers to allow calculations
to take place solely through the input of a keyboard.

A. 8-bit Signed Adder

The 8 bit signed adder that was used was taken directly
from the second lab of this class as it was compatible for
this project. However one change that had to be made for
this adder is that its inputs needed to be extended to 8 bits as
opposed to 5 bits to properly work for this calculator. The
inside of the adder simply contained 9 full adders and a sign
extender which is what allowed for the output to have 16
bits. The top file of the adder is shown below in Figure 2.

Xy
v v

Cout c;in
<1 FA [<
S

B. 8-bit Signed Subtractor

The 8 bit signed subtractor is very similar to that of the
adder as it was also taken from a past lab and then
manipulated to allow for 8 bits instead of 5. The carry in
value is set to ‘1’ for the subtractor. This subtractor also has
a built-in sign extender for the exact same reason as the
adder, to allow for a 16 bit output. The block diagram of the
subtractor can be seen in Figure 3.

A(7)&A B(7)&B
9 9

— Full Adder — "1

Sign Extender

16

Figure 3: Block design of the 8-bit Sign I

C. 8-bit Signed Multiplier

The 8-bit signed multiplier was originally implemented as
unsigned. To convert the multiplier circuit from unsigned to
signed, a custom component was designed. The component
has two inputs, the primary input and an enable. If the
enable is active, the component outputs the two's
complement of the primary input. If the enable isn’t active,
the component will output the primary input. A and B are
both put through this custom component (with the enable of
each being driven by the most significant bit (MSB) of each
respective input) before being sent to the multiplier. This
forces A and B to be positive before entering the unsigned
multiplier component. The output of the multiplier is run
through this component again (now with enable being
driven by A(7) XOR B(7)) to correct the sign of the output
of the circuit to its intended value. The output is then sent to
the input of the MUX through a 16-bit bus. The block
diagram of the 8-bit signed multiplier is shown in Figure 4.

2'sC
enable B(?}

8 8

2's C
A(?’] —enable

Unsigned Array

Multiplier
16
2's C

A(7) XOR B(7) —lenable
* 16

Fi . Block desien of the 8-Bit Siened Multinli

There is a disparity between the number of bits leaving
the multiplier and the other arithmetic circuits. In order for
the MUX design to function properly, the outputs of the
adder, subtractor, and divider all had to be sign-extended to
16-bits to have the same number of bits as the output of the
multiplier. From here the 16-bit signals are input to the
MUX, where the ‘s’ input selects which operation to output,
as can be seen below in Figure 6.

D. 8-bit Signed Divider

The 8-bit signed divider is made up of a few different
components. The main component is the unsigned iterative
divider, as supplied by Dr. Llamocca from his library of
digital system components [2]. The design of the iterative
divider, shown below in Figure 5, consists of an FSM, a
regular register, two parallel access shift registers, a counter,
and a subtractor. The algorithmic state machine (ASM) is
shown to the right of the design of the divider, also in Figure
5. The design was modified in order to accommodate 8-bit
unsigned division. This was done by increasing the size of
multiple buses, the registers, the subtractor and the counter
in the architecture. The output was sign extended to 16-bits,
in order to match the input bits of the MUX.

81
sclR ¢ 1, ERe 1
EC «1, salrC «1

resetn=0
I
0

Figure 5: Design and ASM of the Iterative Divider.
Modified [2].

The purpose of the divider, like the other arithmetic
circuits, was to perform signed division. In order to do this,
the same two’s complement components implemented in the
signed multiplier were also implemented for the divider.
These components were placed before the inputs and after
the output of the unsigned divider. The MSB of each input
controls if the respective input has two’s complement
performed on it or not. The inputs are essentially sent
through an “absolute value” component, forcing the inputs
to act as positive values. For the component on the output,
the enable is activated by the boolean expression A(7) XOR
B(7). This means that the positive output that comes out of
the divider has two’s complement performed on it if only
one input’s MSB is a value of 1 (i.e., (0 XOR 1) or (1 XOR
0)). If the expression returns a 0 (i.e., (0 XOR 0) or (1 XOR
1)), the output remains positive.

E. Calculator/MUX Operation Selection

A multiplexor design was implemented so that the
arithmetic operations are easily accessible through the use
of a select line. As shown in Figure 6, the four previously
described operations act as inputs to the MUX; the select
line chooses which operation signal is output by the MUX.
This is done by the user through the use of the keyboard. By
using one of the four designated operation buttons (+, -, ., /)
as the third user input, the 8-bit scan code associated with
that input is stored in a 40-bit register which passes a scan
code to the operation component. This component encodes
the scan code into a 2-bit value which is sent to the select
line of the calculator, as can be seen from Figure 1. The
architecture of the arithmetic calculator is shown below in
Figure 6.

Figure 6: 8-Bit Calculator MUX-Implementation

F. PS/2 Interface for Keyboard

In order for the user to input data to the calculator
through the use of a USB keyboard, a PS/2 interface was
required. The code for the PS/2 interface was made
available by Dr. Llamocca in the Unit 7 notes [1]. The
interface sends data transmitted from the keyboard, as well
as a clock signal alongside the data. In short, the USB
keyboard communicates directly with an auxiliary
microcontroller on the FPGA board which emulates a PS/2
bus. These PS/2 bus signals are converted from the USB
protocol to the Nexys A7 with the help of the XDC file,
allowing the keyboard to connect to the PS/2 interface
component as if it were using a PS/2 protocol [3]. The
interface reads the start bit, the 8 data bits (least significant
bit first), an odd parity bit, and the stop bit; these are read on
the falling edge of the PS/2 clock as shown in Figure 7. The
start bit is always a ‘0’, the stop bit is always a ‘1’ and the
parity bit is determined by the 8 data bits. The parity bit is
set to ‘1’ if the data bits are composed of an even number of
both “0’s and ‘1°s; otherwise, the parity bit is ‘0’.

| b i i i : i i i i
‘
ps2 DAT | A\t { Do X1 XDp2X D3 XD4aXD5XD6XD7Xp Xstw) !
e\

: \]
T tuto

Figure 7: PS/2 clock and data [1].

The 8 data bits represent the scan code, which become
stored in the 40-bit register shown in the top file in Figure 1.
The scan code that is output by the PS/2 interface is
represented by the signal “DOUT”, and is output alongside
a “done” signal, which lasts for one clock cycle (FPGA
clock). The done signal is an important input to the FSM, as
it instructs the datapath circuit to store the output scan code
in the 40-bit register. The PS/2 interface top file is shown in
Figure 8 below.

my_ps2keyboard

el Vi D Q 7 > DOUT
b2 —1»| MY-PS2read Ipogrio [[:
i sl |Er P
! done_r | i
! DouTs) {—:—)—dene
! 1
: |
resetn —| | FSM :
| P ,
Clock =k e c e e mmmmmmm—m—————- !
7 notes [1].

G. Scan Code Encoders

The scan code encoders were relatively simple to create,
as converting from the scan code to hexadecimal and the
scan code to operation only required a case-when statement
for each component. These scan code encoders were based
off of the scan codes given in the Nexys A7 Reference
Manual [3]. Figure 9 showcases the corresponding scan
code associated with each key on the keyboard. As can be
seen in Figure 1, the inputs to each of the encoders come
from the 40-bit register as a single bus. The 40 bit bus is
then split into a set of five, 8-bit buses. This separates the
data into their respective 8-bit scan codes, which are then
sent through each encoder. The output of the hexadecimal
encoders are 4-bits; the operation encoder only outputs
2-bits. The case-when statements to transform the scan code
to hexadecimal or scan code to operation is shown in Figure
10 and Figure 11, respectively. Notice that if a scan code
that is not listed is input, the component defaults the
hexadecimal encoders to output “0000”, and will also
default the operation to multiplication.

ESC F1 F2 F3 F4 FS FE FT FS FQ F‘I a F‘I 1 F12
76 05 05 04 DC 03 UEI 83 01 DQ 78 07

8 C 1B 23 2
z X C
1Z 22 21

Cirl Alt Space Alt Cirl
14 11 29 EO 11 EO0 14

Figure 9: PS/2 k I n

entity ScanCodeToHex i
Port (Scan : in STD_.
Hex : out STD

end ScanCodeToHex;

VECTOR (7 downte 0);
_VECTCR (3 dewnto 0));

architecture Behavioral of ScanCodeToHex is
begin
process (Scan)
begin
case Scan is
when "0100"&"0
when "
when "

0 'ar
B
o
. 13 'p*
0"; --14 'E'
s —-15 'F*

—-anything else, '0'

AAANAAAAANAAANAANANA

A

when others => Hex <= "0oo0T;

end process;
end Behavioral;

Figure 10: Scan Code to Hexadecimal Encoder. The
hexadecimal value is defaulted to “0000”.

entity ScanCodeToOP is
Port (Scan : im STD_LOGI
op : out STD LOGIC
end ScanCodeToOP;

CTOR (7 downto 0);
TOR (1 downto 0));

architecture Behavioral of ScanCodeToOF is
begin
process (Scan)
begin
case Scan is
when "

0 " => op <=
when "

" o=> op <=
when " " => op <=
when "0100"&"1010" => op <= "
when others => op <= "10";

end case;

end process;

——anything else, default to multiplication
end Behavioral;

Figure 11: Scan Code to Operation Encoder. The operation
value is default “10” (multiplication

H. 7-Segment Serializer

A serializer is required to display the 16-bit calculation at
once on the Nexys A7 board. This is due in part by the
architecture of the board, where each cathode on every
individual 7-segment digit shares a single node [3]. The
serializer consists of a FSM, a four input multiplexor, a 1
millisecond counter, a 2-to-4 decoder, and a hexadecimal to
7-segment decoder. The FSM is controlled by the 1 ms
counter, which outputs a 2-bit value for every 1 ms that
passes. The output of the FSM controls the select line of the
multiplexor and passes through the 2-to-4 decoder. The
2-to-4 decoder essentially activates one of four 7-segment
digits every millisecond, allowing the user to see the
individual digits making up the 16-bit result. To display the
calculation, the output of the calculator is connected to the
input of the serializer, or the multiplexor. To match the bus
size of the calculator to the input of the multiplexor, the
16-bit single bus is split into four separate 4-bit buses,

which are connected to the input of the multiplexor. The
block diagram of the serializer is shown in Figure 12 below.
The 7-segment serializer was supplied in the Unit 7 notes

[].

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m—te| segments (O

decoder

0
B by (1 4 HEXto7 | '
2
3

Counter

E (0.001s) — $ 7777777 i ,,,,,,, $,,,,,,,i,,,:
' 2104 | buf 4 buf(3) buf(2) buf(1) bU(0);

decoder

DATAPATH CIRCUIT

FINITE STATE MACHINE

Figure 12: 7-Segment Serializer top file, from the Unit 7

notes [1].

1. Finite State Machine and Datapath Circuit

A few designs of the FSM and datapath circuit were
considered before settling on the design pictured in Figure
1. The datapath circuit consists of all of the components
mentioned previously, as well as two counters and two
registers that are controlled by the FSM of the 8-bit signed
calculator. In fact, the FSM functions as the control circuit
of the entirety of the datapath circuit. The FSM allows the
user to input a value from the keyboard while it is in state 1.
Once the FSM receives a signal from the keyboard, the scan
code output from the PS/2 Interface component becomes
stored in the 8-bit register, and the FSM enters state 2.

During state 2, the 8-bit register shifts all of the scan code
data (MSB first) into the 40-bit register. This is controlled
by the modulo-8 counter; once the data is stored in the
40-bit register and the 40-bit register isn’t yet filled up (the
modulo-40 counter keeps track of that), the FSM goes back
to state 1, awaiting another input. Once five values are input
by the user (the modulo-40 has reached maximum count and
the 40-bit register is filled), the FSM goes into state 3.

During state 3, the calculation is displayed automatically
for the user to see; there is no need to press any buttons to
see the result. In order to begin a new calculation, the user
must press the enter key (any other key will not work) so
that the FSM returns to state 1, clearing the registers and
counters.

The ASM is shown in Figure 13, while the block diagram
of the FSM is shown in Figure 14. To aid in debugging the
design of the FSM, a total of three LEDs were assigned, one
to each of the FSM’s states. This way, if the calculator
required more or less than five inputs before it would reach
state 3, the debugger would be able to tell based on which
LED is illuminated, and could adjust the counters or outputs
of the ASM accordingly. The LEDs also help the user
recognize what state they are in. State 2 lasts for around 100

nanoseconds before switching states, so the LED associated
with state 2 never appears to be on for the user.

resetn =0

51

EA<— 1, sclrA <—1, LED1 <~ 1 I

State 1:
Waiting for

o>
input

1

ER<--1,lR<-—-1
52

EBR<— 1, ER<— 1, LED2 <1 %

State 2: Shift

the input
53
State 3:
Calculation
complete, press ves ER<—1, ED <1, EBR <1,
enter to restart (Enter) sclrR <= 1, sclrD <1,

Figure 13: ASM of the 8-bit signed calculator.

Efe— E
Counter D Counter A
Modulo 40 Modulo 8
D A
«—]7 sclr] —>{sclr I
< >
scrD| |ED LRT EA| |scrA
ER
8 HER
DOUT +.
IsclrR,
A — .
Calculator Finite State |EBR
D — N
Machine LED
done —»{
LED2,
S LED3,

Figure 14: FSM of the 8-bit signed calculator, with the
counters attached.

III. EXPERIMENTAL SETUP

After each component was completed a testbench was then
written for each arithmetic component to search for any
possible errors. These errors included things such as not
receiving an output at a specific operation on the timing
diagram or not having the simulation run at all. However
this was easily fixed after reviewing the code and solving
the errors. Screenshots of the Vivado simulation results can
be seen for each of the operations below.

Untitled 1%

Q W a a X

Figure 16: Simulation results for the subtractor.

Untitled 3

<

5

IV. REsuLTS

The calculator designed in this project works similarly to
that of a traditional calculator as it uses multiple operations
such as addition, subtraction, multiplication, and division.
Instead of having a keypad to make inputs, this calculator
instead uses a traditional USB keyboard where the
operations are “+, -, ., /7. This calculator can have an input
between -128 to 127. The resulting output number will
always be in hexadecimal so that if the result is negative
then that will be accounted for. These results will be
displayed using the seven segment displays on a Nexys A7
board. To view the demonstration of the calculator, visit the
link here:
https://www.youtube.com/watch?v=1yo0TZqZtCY

CONCLUSIONS

Once this calculator was finished, some conclusions were
made. The use of block diagrams were super important as
without them it would have been nearly impossible to
visualize the circuit that was being made. This project was a
great way to learn and reinforce past topics such as,
designing multiple operations and connecting them in a
single top file. To complete this project multiple design files
were made along with a testbench and a constraint file.
With all of these files properly working the calculator is
finished. Once the project was completed it was simple to
see why Vivado and VHDL coding is used and how it can
be applied in a professional environment.

REFERENCES

[1] D. Llamocca. (2021). ECE2700 - Unit 7: Introduction to
Digital System Design [PDF].

[2] D. Llamocca. “Courses.” Reconfigurable Computing
Research Laboratory. Accessed: Apr. 20, 2023. [Online.]
Available:
https://www.secs.oakland.edu/~1lamocca/Courses.html

[3] Digilent, Pullman WA, USA. Nexys A7 FPGA Board
Reference Manual (2019). Accessed: Apr. 20, 2023.
[Online]. Available:
https://digilent.com/reference/programmable-logic/nexys
-a7/reference-manual

