
Don’t Forget Your Bits
Combinational Lock

Authors (Zachary Hill, Zachary Jump, Aidan Gallagher, Stephen Hayes)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: zhill@oakland.edu, zjump@oakland.edu, aidangallagher@oakland.edu, stephenhayes@oakland.edu

Abstract—This combinational lock project will take a
combination of three initial four bit inputs (four
numbers/letters 0-9 and A-F) from the user and store it
as the unlock sequence. The user inputs this combination
with the sixteen switches on the Nexys A7. In the
“set-up” state of the lock, a button (BtnL) will store the
user's combination. During the unlocking state, the user
will attempt to unlock the combination using the same
switches and the RGB LED will light up red if the safe is
still locked and green if the user has inputted the correct
combination. A reset button will clear the user’s
combination and restart the circuit. In each state of the
lock, each set of 4 switches will be displayed as a
hexadecimal value on the 7 segments displays. As a
general rule of this system, the user will control the
states themselves using the far left switch on the FPGA
board. Once their combination is made and BtnL is
pushed, the user is recommended to set all the switches
back to the down position before changing the state
switch (SW15) to the guessing stage.

I. INTRODUCTION

The scope of this project is to design and demo a
combinational circuit. The project uses synchronous circuits
through VHDL implementation. Input feedback and
validation outputs are generated through the combinational
circuit for user interaction.

Our team wanted to design a fundamental circuit design
that covers the most frequently used implementation
techniques. Some of the essential components include
decoders, a demultiplexer, a multiplexor, a comparator, a
counter,a register, and two Finite State Machines.

The application of our circuit is to model a lock for a
safe that is accessed with an FPGA. A user may choose to
either memorize a sequence of up and down switches (these
switches will represent a hexadecimal number) or they may
choose to use a combination which reflects a sequence of
numbers (0-9) and letters (A-F). We are employing three
seven segment displays to show the user what combination
of numbers and letters they are inputting. This will allow a
user who does not know hexadecimal to be able to keep
track of their combination or their guesses at the
combination. The color of the RGB LED will dictate if the
sequence was inputted correctly or not.

On the application and digital level, our circuit can be
split into three distinguishable states. Our circuit is

representative of what we learned in our labs and lectures
throughout the semester, as well as topics found in Daniel
Llamocca’s website[1]. Our design is centered around a
12-bit register, a component that is very familiar to students
that have taken ECE 2700, and the 12-bit comparator, which
draws the connection between the combination selecting and
combination unlocking states of the design. One of the
larger challenges of the project was determining how to get
all three of the seven segment displays to show different
numbers representing the respective four switches below
them, all updating in real time. This was done by utilizing a
“serializer” design, which consists of a counter, FSM,
multiplexor select, and a 2 to 4 decoder[3]. The function of
a serializer is to switch the select of a multiplexor every
millisecond while also enabling the multiplexor input’s
respective seven segment display. Since all of the seven
segment displays on the FPGA board are all controlled by
the same output, the serializer essentially changes all of the
displays on the board every millisecond, but only enables
one at a time so that the user has the illusion of a real time
display of what the switches on the board represent. The
project will utilize several parts of the FPGA board. 3 of the
seven segment displays, 13 of the switches, and 2 buttons
will be implemented to facilitate the user’s interactions with
the combination lock.

II. METHODOLOGY

A. Component Gallery
As mentioned in the introduction, this project’s design is

composed of a register, hexi-decimal to seven segment
display decoders, a 2 to 4 decoder, a counter, two FSMs,
logic gates, a comparator, a demultiplexer and a multiplexor.
The function of the register in the design is to store the input
from the user in the combination selecting phase[4]. The
12-bit register is enabled by a switch of input “E” where a
value of ‘1’ will let the combination of the user pass through
into storage upon the press of BtnL (“E” and “BtnL” are
inputs to an “AND” gate and the output of this gate is the
input to the register). Once the user has stored their
combination and the enable switch is flipped to the down
position, the RGB LED will light up red. The 12 bit
comparator will be used to compare the 12 bits representing
the user-chosen combination and the 12 bits representing the
attempt at unlocking the safe. The comparator outputs a ‘1’
when the bits are all equal and a ‘0’ when the bits are not all
equal. The comparator is also enabled by a signal that is the

mailto:%7a%68%69%6cl@%6f%61%6bl%61%6e%64.%65du
mailto:%7a%6a%75%6d%70@%6fak%6ca%6e%64%2e%65%64%75
mailto:ai%64%61%6e%67%61l%6cagh%65r@o%61%6b%6c%61%6e%64.%65%64u
mailto:st%65ph%65%6e%68ay%65%73@oa%6b%6ca%6e%64.%65%64u

enable switch “E” going through a not gate so that the
comparator will operate when the register is no longer
enabled and vice versa. When the comparator is off it will
output a ‘0’. The demultiplexer is used to direct the top file
input “X” to either the register’s input “D” or the
comparator’s input “x”. The demultiplexer select is
controlled by the enable switch “E” (SW15). The
multiplexor (3 to 1) serves alongside the 2 to 4 decoder, Hex
to 7 segment decoder, counter, and FSM to act as a serializer
so that the user may keep track of the hexadecimal
representation of the switches.

B. Component Interactions
The biggest variable in this design is the output of the far

left switch, “E”. This output, when on, will allow a
combination from the user to pass into the register at the
instance of a button push (btnL), controls the select to the
demultiplexer, enables the comparator, and serves as an
input to the RGB FSM. Top file input “X”, which is equal to
the values represented by the first twelve switches on the
FPGA (SW0-SW11), is the input to the multiplexer and
demultiplexer, which eventually travels to the register and
comparator. The output of the comparator is also the input to
the RGB FSM, whose output is the top file output “RGB”
which dictates which color shines on LED16. To describe
the serializer structure in detail, it begins with the counter,
which is designed to output a ‘1’ every millisecond. The
counter receives top file inputs “clk” and “resetn” just as the
register and both Finite State Machines do. The output of
the counter also serves as the input enable to the serializer’s
FSM. This FSM’s output “sel” serves as the input select to
the multiplexer and the input to the 2 to 4 decoder. As the
FSM changes the “sel” every millisecond, the multiplexer
will cycle through which input (, ,) goes into the Hex𝑥

0
𝑥
1
𝑥
2

to 7 segment decoder and then to the top file output “R”,
which dictates what value shows up on the seven segment
display.

C. Finite State Machines of the Design

Two Finite State Machines
(FSMs) are used to control
the RGB LED FSM and the
Seven Segment FSM(s) [2].
Both of the FSMs consist of
three states which direct the
components behaviors and
actions. The RGB LED
FSM consists of a transition
influenced by “resetn”,
“clock”, “s”, and “SW15”.
The output is the RGB
value. In state one, the FSM is
in setup mode which turns
the LED off “000”. During
state one “SW15” is the
enable switch. If “SW15” is
equal to one, we return

back to the start of state one. However, if “SW15” is zero,
we move into state two. In state two, the circuit is in a
locked state awaiting for the

correct user combination and will display a red LED “100”.
This is controlled by “s” which is the output from the
comparator. While “s” is valid, we remain in state three, else
we return to state two. In the final state three, the circuit is
in an unlocked state which indicates the combination was
correct, thus displaying a green LED “010”. The influence
of staying in state three depends on “SW15” being false and
the value of “s” to be true, else we remain in a locked state.
If “SW15” is true, we return back to state one and repeat the
RGB LED FSM.

Figure 3 - Seven Segment FSM

The other FSM that the circuit uses is the Seven
Segment FSM which has transitions that are controlled by
“resetn”, “clock”, and “E”. The output is the value of “sel”
which is controlled by “E” where “E” is the output of the
counter. “sel” itself will influence the MUX and Decoder
that allows the seven segment display to show different
values on each display. In state one, the value of “sel” is
“00” and remains as such if “E” is also ‘0’. If “E” becomes
true in state one, we transition into state two. State two gives
the value of “01” to “sel”. Again, if “E” is false, the circuit
remains in state two, else we transition into state three. In
state three, the value of “sel” changes to “10”. In this last
state, if “E” is ‘0’ the circuit remains in state three, else the
circuit will return to state one and restart the seven segment
FSM. In practice, the FSM will advance in state every
millisecond as long as the FPGA is powered on and the
“resetn” button is not pushed.

III. EXPERIMENTAL SETUP

Indicate the setup you used to verify the functioning of
your project. What software/hardware tools did you use?
What was the specific configuration of those tools? What
are the expected results?

Our group used the Nexys A7 100T FPGA as a source
for testing the physical functionality of the project. We also
used Vivado’s Simulation software to implement a
behavioral simulation to which we can validate the circuit.
Within this testbench, the user input “X” displays 420 onto
the three 7-segment displays which is then locked. The test
reflects three inputs after the program was locked. Two of
these inputs are 666 and 101 which were proven to fail and
the third being 420 resulting in a successful test along with
an unlocked program. Also included within this testbench
was signal R to represent the segments within the display
that would turn on, RGB to represent the color of the LED,
and “checkcode” to help visualize the correct code a user
may input into the program.

IV. RESULTS

As seen in the testbench and as explained in the
Experimental Setup of this report, we utilized the behavioral
simulation software in Vivado to debug and check the
functionality of the circuit. We found after the initial
simulation of the test bench we needed to assign a button
press duration so the users code would not be continuously
entered into the register. This also provided a clear visual
representation of the button press in the simulation;
mimicking a real world physical input. Our team was
initially worried about propagation delays with a 1 ms
counter and the interaction this would have with the button
press from the user.

Our team also included a physical demonstration of the
combinational lock physically working on the FPGA. This
demonstration can be found at the end of the appendix
section of the report.

CONCLUSIONS

The process of creating a combinational lock within an
FPGA board sounds simple but is proven to be very tedious
and time consuming. This tedious work can be found within
every component along with certain routes that components
must take for the lock to properly function. Every
component involved within this combinational lock plays an
important role. One of the more important components
include but is not limited to the comparator since it decides
whether or not a user input aligns with the one that
originally locked the program. One issue that we came
across was mapping different components together.
Likewise, a simple mistake such as the demux outputs being
flip flopped can cause the entire program to fail. Looking
back, if we were to expand this project farther, we would
implement more components such as a breadboard, speaker,
and a locking mechanism to help better display our project
and its purpose.

REFERENCES

[1] D. Llamocca, VHDL Coding for FPGAs. [Online]
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

​
[2] D. Llamocca, “VHDL Coding for FPGAs Unit 6,” Reconfigurable

Computing Research Laboratory (RECRLab), Electrical and
Computer Engineering Department, Oakland University.[Online].
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit
%206.pdf

[3] D. Llamocca, “VHDL Coding for FPGAs Unit 7,” Reconfigurable
Computing Research Laboratory (RECRLab), Electrical and
Computer Engineering Department, Oakland University.[Online]
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit
%207.pdf

[4] D. Llamocca, “VHDL Coding for FPGAs Unit 5,” Reconfigurable
Computing Research Laboratory (RECRLab), Electrical and
Computer Engineering Department, Oakland University.[Online].
https://www.secs.oakland.edu/~llamocca/Courses/ECE2700/Notes%2
0-%20Unit%206.pdf

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%206.pdf
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%206.pdf
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%207.pdf
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%207.pdf
https://www.secs.oakland.edu/~llamocca/Courses/ECE2700/Notes%20-%20Unit%206.pdf
https://www.secs.oakland.edu/~llamocca/Courses/ECE2700/Notes%20-%20Unit%206.pdf

APPENDIX

Figure 1 – Top File Block Diagram & FSMs

Figure 2 – Behavioral Simulation Waveform

Figure 3 - Seven Segment FSM

Figure 4 - RGB LED FSM

Demonstration of Combinational Lock URL: https://youtu.be/KmQWPVBU4QQ

https://youtu.be/KmQWPVBU4QQ

