Settable Audio Alarm Clock

Robert Brown, Jacob Feldpausch, Jacob McCarthy, Nicholas Mojares
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, Ml
e-mails: rbrown3@oakland.edu, jacobfeldpausch@oakland.edu, jacobmccarthy@oakland.edu,

nmojares@oakland.edu

Abstract - In order to gain an
understanding of how to develop a
digital system, a 24-hour alarm clock that
can be set to any time is being
developed that will sound an alarm at a
time set by the user.

|. Introduction

This report will describe in detail the
24-hour settable audio alarm clock that was
created. This project aimed to use VHDL in
order to create a working digital system
incorporating adders, counters, multipliers,
comparators, seven segment displays, and
more. The alarm clock will be programmed
onto a Nexys A7-100T development board
and will be programmed using VHDL.

Our motivation was to apply the
concepts studied in ECE 2700-such as
VHDL code and digital circuit elements—to
real-life, hands-on digital design and
implementation.

II. Methodology
A. Design Methodology

The alarm time is set using the 16
switches on the board, encoded in BCD.
This allows the user to quickly input the
number they want on a per digit basis. The
alarm time will also be displayed in decimal
24-hour time on one set of seven segment
displays. The current time will be displayed
on another set of seven segment displays.
When the current time reaches the set
alarm time, an auditory alarm will be
sounded which can be stopped using a
button on the board. This will be done by
comparing the current time (counted in

minutes) to the time imputed by the
switches.

A PWM signal will be used to
generate the alarm sound and will be
connected to a buzzer using the PMOD
ports on the Nexys board to be plugged into
a speaker. The BCD signal from the
switches will be converted to be displayed
on the seven segment displays, while also
being converted into binary and then
converted to the total time in minutes. This
will be done by multiplying the hours by 60
to get it in minutes where it will then be
added to the minutes time to get the total
minutes for the alarm. The current time will
be tracked by downclocking the 100MHz
internal clock to once per minute. This
number will then be compared against the
alarm time. The once a minute signal will
also be used to separately track the current
time in standard 24-hour time to be
displayed on the seven segment displays.
The once a minute clock will be fed into a
60 counter in order to track the current
minutes in the hour. Every time the 60 count
has completed that will trigger a 24 counter
in order to track the current hour in the day.
Both of these counts will be then converted
into BCD and finally converted to be
displayed on the other set of seven segment
displays.

lll. Experimental Setup

In order to test the functioning of our
digital alarm clock, we programmed the
Nexys A7-100T board using VHDL. After
implementing the code onto the board, we
ran sample tests, setting the alarm to go off
after a short period of time to see if

mailto:rbrown3@oakland.edu
mailto:jacobfeldpausch@oakland.edu
mailto:jacobmccarthy@oakland.edu
mailto:nmojares@oakland.edu

everything ran properly. After encountering
a problem with the alarm, we analyzed the
issue in order to determine which part of the
code was causing the issue—the counters,
the comparator, the multiplier, etc. Ideally,
the user will input a time for the alarm to go
off, which is displayed on one of the seven
segment displays; and when the current
time (displayed on another set of seven
segment displays) reaches the set alarm
time, the alarm will sound. Achieving this
end was our goal in experimental testing.

V. Results

We encountered an issue where the
current time stayed at 00:00 for two
minutes, and then changed to 00:01. The
displayed current time was then essentially
one minute behind the actual current time.
We determined this was due to an
asynchronous reading between a binary to
bcd conversion that was feeding the display
and a counter output. This was fixed by
adding a 1 clock cycle delay between the
activation of the counter and the activation
of the binary to BCD converter. Another
issue encountered was due to the fact that
the z output of counters were being used to
activate other counters, those counters
would be activated for the entire duration of
the first counter being high. A monostable
circuit was added to ensure signals did not
remain high for more than one clock cycle.
After going through many iterations and
debugging issues, the circuit functioned as
intended.

Below is a link to a demo video showing the
alarm going off after one minute.

https://www.youtube.com/shorts/NEbo9oES8
LKk

Conclusion

After collaborating with our group and
combining our code for each component
together we were able to make a functioning

alarm clock, using the Nexys Board. This
alam worked based on a 24 hour (or
standard time) clock which allowed us to
simplify our design as well as fit it within the
8, 7 segment display. We were also able to
produce an audio for the alarm using an
external audio device from the board's
output. During the work on the finalized
version of our code we ran into a few
problems. The first being an error that
involved the clock, and the Resetn. We
were able to determine that we forgot to add
the clock signal to one of our FSM (finite
state machines), so it would seem that
VHDL was trying to use the Resetn as a
type of clock signal but could not resolve it
as one, this was simply fixed by added the
clock, however it was a interesting learning
experience because none of us had
encountered the error before. The other
problem we encountered was a delay from
the current time and the time being
displayed. We knew this because we timed
how long it should take, as well as the fact
that the buzzer was going off as expected.
The problem ended up being that the binary
to BCD module was not outputting the
signal from our counters as discussed
previously in our results. For each of these
problems we were able to utilize synthesis,
simulation and testing on the board to
determine the problem, as well as solve it.

For our design of an alarm clock there are
some areas we could improve. The first
improvement we could have made would be
allowing the time to be set. In our current
design, the time starts at 0 when the reset
button is clicked. We could potentially
include this function with a different mode
and use the switches the same way the
alarm is set. We would need to include
some kind of memory in order to do this.
Another possible improvement would be a
different way to set the alarm time through a
different input like a computer. This would
give the advantage of not needing to
convert the desired time into BCD.

By accelerating the speed of the system to
a microsecond scale, it could be easily

https://www.youtube.com/shorts/NEbo9oE8Lkk
https://www.youtube.com/shorts/NEbo9oE8Lkk

tested using a testbench file. The alarm time
is set to 00:01 initially and the system is
simulated for several microseconds, once
the current time reaches 00:01, the alarm is
enabled until the current time reaches 00:02
and it turns off. A screenshot of this
simulation is included below.

Overall designing and implementing this
design taught us new ways in which the
Nexys board works and we tackled new
problems by doing so. We learned how to
serialize an output for our 7 segment
displays, and we learned how to send an
external output from the board. Those of
which have not been done so far in our lab.

BCD to Seven
Segment Display

J

88

Multiplier

111100

BCDto Seven
Segment Display

24 Counter E
Q

&

-

BiMto BCD

f

E

¥

BCD to Seven
Segment Display

/

88

}

58

1]

«— 7 G0 Counter

|
l

BiMto BCD

&

v

BCD to Seven
Seqgment Display

v

85

Block Diagram of the Entire Alarm System

L 4

11-bit Adder

1438 Counter
E

3

Z
GG Counter

100 MHz Clock

[&1]

Alarm

Untitled 11*
&

4_000000 us| .

e resetn
& bin
8 clk
> M led(6:0]
> W led_an[7:0]

Accelerated Simulation Results Showing Functionality of the System

