
4-Way Traffic Light Controller

Rafil Yousif, Yuan Wei, Joe Kocenda
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: rafilyousif@oakland.edu, yuanwei@oakland.edu, jjkocenda@oakland.edu

Abstract— This written report demonstrates the design and
simulation of a simple 4-way traffic light controller, with 2
different modes for regular and light traffic. During regular
traffic, the traffic light operates normally cycling through all
signals. In light traffic, flashing yellow is displayed for the
high-traffic road, and flashing red for the low-traffic road.
For this project, counters, multiplexers, and finite state
machines offered the best method of implementation. The
goal of this project was to be able to comprehend or
understand one possible method of replicating a 4-way
traffic light, using the knowledge gained from this course,
and other courses as well.

I. INTRODUCTION
Traffic lights play an important role in today’s world as

society depends on traffic lights to function properly and
ensure the general safety of daily commuters or travelers
whether it’s by automobile, bike, walking or any other
type of transportation. In general, traffic signals are meant
to maintain an orderly flow of traffic in multiple
directions.

The purpose of this project is to design a functioning 4-
way traffic light controller with no left or right-hand turns
utilizing VHDL digital logic tools, such as finite-state
machines (FSM), counters, multiplexers, and synchronous
circuits. The knowledge regarding counters, multiplexers
and finite-state machines acquired from this course, along
with independent research was essential in designing this
circuit. This traffic light system demonstrated one
possible method of how the device may function in real-
life through implementation on the field-programmable
gate array (FPGA) using Vivado.

II. METHODOLOGY

A. Clock and Counter Utilization

To have all the components function in unison,
manipulation of the 100 MHz master clock was necessary.
Manipulation of the master clock was accomplished by
implementing 4 total counters, each counting to a different
number of seconds. To have a properly functioning traffic
light, each light must remain illuminated for a specific
number of seconds to correctly control the flow of traffic,
explaining the importance of 4 counters to differentiate
between states. These counters will operate successively,
meaning once the first counter has reached its limit, the next
counter will begin counting and so forth. For example,

states 0 and 3 operate with a 15 second counter, and the
succeeding states operate with a 3 second counter once 15
seconds have passed.
B. Regular Traffic Finite State Machine

 Finite state machines were the main driving force of
this entire system, thus it is extremely important to
understand how they are being utilized in this digital design
system. The regular traffic FSM consists of 6 states, one for
each possible scenario the traffic light may produce. Along
with this FSM are 3 counters mentioned previously that
work cohesively but have their own separate amount of time
to count (15, 3, and 1 second). The finite state machine
works as such: the traffic light will begin at state 0
displaying red in the North and South directions, and green
in the East and West directions. This state will continue to
occur until 15 seconds have been counted (first counter).
Once 15 seconds have passed, the counter is cleared, and
the FSM transitions to state 1 displaying red in the North
and South directions and yellow in the East and West
directions. Per regular traffic light rules regarding the
yellow light, it should only stay on for a short period. As a
result, state 1 will only occur for 3 seconds (second
counter). After the counter finishes counting and is cleared,
the system will move to state 2, displaying red in all 4
directions. Again, per traffic light rules, this state will occur
for no more than 1 second (third counter). It will then move
on to state 3, showing green in the North and South
directions and red in the East and West directions (vice
versa of state 0). It will remain at state 3 until it has counted
15 seconds (first counter) and then shifts to state 4. State 4
displays yellow in the North and South directions and red in
the East and West directions for 3 seconds (second counter).
Once 3 seconds have passed, it will jump to state 5
displaying red in all directions for 1 second (third counter).
Finally, it returns to state 0 after 1 second, and the entire
process repeats again. The full algorithmic state machine
(ASM) for the regular traffic mode is shown in Figure 1.

Figure 1: Regular Traffic Mode ASM State Diagram

C. Light Traffic Finite State Machine

Continuing, the light traffic mode acts differently from
the regular traffic mode, as the yellow and red lights flash
(yellow for high traffic road, red for low traffic) on and off
repeatedly second by second (on for 1 second, then off for
1 second). For this finite state machine there are only 2 total
states. State 0 displays every light as off and the next state
displays only the yellow and red lights (in opposite
directions) as on. Fortunately, this FSM only requires the
use of 1 counter (1 second) as that counter can be used for
both states. This finite state machine works as such: the
traffic light begins at state 0 and remains at state 0 until the
counter reaches 1 second. Once the counter has reached 1
second, it will move to state 1 where the yellow and red
lights will begin to flash. The yellow and red lights will

remain lit until the same previous counter reaches 1 second
again. The FSM will continue to loop the same system using
that single counter, hence the “flashing” feature. The full
algorithmic state machine (ASM) for the light traffic mode
is shown in Figure 2.

Figure 2: Light Traffic Mode ASM State Diagram

D. Selecting with a Multiplexer

To differentiate between which traffic mode is being
displayed, a 2-to-1 multiplexer was implemented into the
design. This multiplexer simply allows the user to choose
between which traffic mode to make active depending on
the time of day, using a single switch.

E. Block Diagram

In summary, the functionality of two different traffic
modes, required the design to consist of 4 counters, 2 FSMs,
and 1 multiplexer. The multiplexer determined which mode
the system displayed and 2 FSM’s, to control the regular
and light traffic modes. To be specific, the multiplexor was
controlled by a switch on the Nexys A7-100T board. When
the switch was off, the default regular traffic mode was
enabled, and the light traffic mode was enabled when the
switch was on. The utilization of two different FSMs
allowed each mode to work properly, without having to
worry of an overlap between modes resulting in the system
displaying the wrong signals. The block diagram of the
entire system is shown in Figure 3.

LEDS1 <- 100001
EA <- 1

LEDS1 <- 100010
EB <- 1

LEDS1 <- 001100
EA <- 1

LEDS1 <- 100100
EC <- 1

LEDS1 <- 010100
EB <- 1

LEDS1 <- 100100
EC <- 1

resetn = 0

zA

zB

zC

zA

zB

zC

S0

S1

S2

S3

S4

S5

1 0

0

0

0

0

0

EA, sclrA <- 1

EB, sclrB <- 1

EC, sclrC <- 1

EA, sclrA <- 1

EB, sclrB <- 1

EC, sclrC <- 1

1

1

1

1

1

LEDS2 <- 000000,
ED <- 1

LEDS2 <- 100010,
ED <- 1

zD
0

ED <- 1, sclrD <- 1

zD 0
ED <- 1, sclrD <- 1

1

1

S0

S1

resetn = 0

Figure 3: Block Diagram

III. EXPERIMENTAL SETUP
To properly demonstrate the functionality of our

traffic light controller, 12 light-emitting diodes (LED) and
their corresponding 220 ohm current-limiting resistors
were placed on a breadboard and connected to a Nexys
A7-100T board (3 LEDs for each direction). The
connection between the breadboard and the Nexys board
was accomplished using the PMOD port JA on the Nexys
board. This port allows for the connection between
peripheral modules and the FPGA by sending
programmed signals from the board. Finally, one of the
provided switches on the FPGA was used to ensure the
proper traffic mode was being displayed. A photo of the
peripheral traffic light system is shown in Figure 4.

Figure 4: Peripheral Traffic Light System

IV. RESULTS
The results of this project are in line with expectations

as the program was implemented seamlessly. This digital
design system accurately simulates the functionality of a
four-way traffic light with 2 different modes for regular and

light traffic. Initially upon implementation, the state
machines were not transitioning between states because the
counter was counting to large values. Essentially, the
counters were set for such a long time that the shifting
between states was noticeable. However, after fixing the
issues with the counter values, the traffic light correctly
switched between states in the correctly timely manner. If
for some reason the traffic light didn’t operate correctly, it
could easily be reset by pressing the reset button on the
Nexys board. Figures 5 and 6 display the state transitions
for both traffic modes.

Figure 5: Regular Traffic Mode

E
sclr

Q

z

Genpulse
15 seconds

E
sclr

Q

z

Genpulse
3 seconds

E
sclr

Q

z

Genpulse
1 second

E
sclr

Q

z

Genpulse
1 second

Regular
Traffic
FSM

EA

EB

EC

sclrA sclrB sclrC

zA zB zC

Light
Traffic
FSM

ED
sclrD

zD
LEDS1 LEDS2

0 1S

6 6

6

LEDS

Figure 6: Light Traffic Mode

CONCLUSIONS
This project allowed students to dive deeper into the

programming of FPGAs using VHDL, and obtain a
stronger understanding of how digital design systems are
created. The issues that arose during the process of
programming gave students hands-on experience with
troubleshooting and the type of things that can occur
when working with a system of this complexity. There
were also numerous design issues that were faced. The
use of the PMOD ports on the Nexys board was also
something brand new to students, as they were forced to
learn the functionality of those ports independently. Of
course, there are numerous ways to improve this system
as this design replicated a simple traffic light. Some
improvements that could be made include adding the
ability for oncoming traffic to turn left or right. A
crosswalk system could also be implemented to help
control the flow of traffic for pedestrians. Despite the
issues and improvements stated, the four-way traffic light
created still functions proficiently and accurately.

REFERENCES
[1] Llamocca, Daniel. VHDL Coding for FPGAs,

www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
[2] Brown, Arthur. “Nexys A7 Reference Manual.” Nexys A7 Reference

Manual [Digilent Documentation], Digilent,
reference.digilentinc.com/reference/programmable-logic/nexys-
a7/reference-manual.

