
FPGA Sound Synthesizer

Creating a sound synthesizer and effects bank in VHDL

Armela Gjokaj, Forrest Mason, Mehvi Mehvi, Tyler Waddell

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: armelagjokaj@oakland.edu, forrestmason@oakland.edu, mehvi@oakland.edu, waddell@oakland.edu

Abstract— The purpose of this project was the implementation

through VHDL of a sound synthesizer. The design philosophy

utilizes a state machine, a multiplexor, counter, and pulse width

modulations module to drive a buzzer through one of PMOD

ports on the Artix-7 FPGA boards. The components of this final

project include several essential VHDL coding techniques.

INTRODUCTION

The report goes into further detail on the planned design
architecture of the FPGA Sound Synthesizer project and how
it was implemented through VHDL in the Xilinx Vivado
Design Suite.

The project implements a sound synthesizer through
VHDL. For our project we used an external device, which is
the buzzer, that we connected through the PMOD ports. The
goal of the project was to play a sound that can be heard from
humans, based on 8 different frequencies. The user can use
SW[0] to hold the system in its current state. Otherwise, the
user can use SW[1] to play the notes (C, D, F, E, G, A, B, C).
Notes ascend from C4 to C5; notes are considered natural
because they have no sharps or flats.

I. METHODOLOGY

Before the system is programmed to our specification,
some math is necessary to achieve desirable frequencies.
Individual musical notes have a unique resonant frequency,
and if we want to implement a system that plays back these
notes, we need to calculate the frequency at which our
component modules should operate at. Because the FPGA
board used in this demonstration operated at a clock rate of
100MHz, that can be used as a reference clock in our
calculation. The method used to play back the audio involved
a PWM module that utilizes a count that’s in reference to the
period of the clock rate, so that is our desired value to
calculate. By dividing the clock rate by the note frequency,
we can get a number of periods that the PWM module should
count to for output. This calculation is as follows

𝑇𝑃𝑊𝑀 (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) =
108 (𝐻𝑧)

𝑁𝑜𝑡𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

In the sake of brevity, a table of these values has been
included.

Table 1: TPWM and DC Values

Clock Rate
Note

Note
Frequency

TPWM
Count

DC

100MHz

C 261 383142 191571

D 293 341297 170648

E 329 303951 151976

F 349 286533 143266

G 392 255102 127551

A 440 227273 113636

B 493 202840 101420

C 523 191205 95602

The DC value is then calculated as a method of volume
control, implemented as the TPWM count divided by a factor
of two. Because it helped in clarity later on, all values for the
TPWM count in program were rounded to an even number so
as to avoid decimals in resultant calculations.

A counter is used to buffer the output of the states to a
point that it is discernible to the human ear. Having the states
change at the rate set by the clock system would result in a
blur and not produce easily recognizable notes. By
implementing a counter and connecting its output as an enable
function in the FSM, we can modulate the cycling from one
state to another. In this case, the counter counts to 25,000,000.
This number was chosen because it results in a quarter note
being played at 60 beats per minute, which is a simple tempo
that is easy to keep up with and gives the user/listeners ample
time to recognize note changes.

VHDL language will be used in order to successfully
program the Artix-7 Nexys FPGA board. The process of
building this circuit consists of two primary systems that can
each be represented in diagrams. The first is a state diagram
that describes the desired output of the program based on user
input, and the second a block diagram which uses the state

diagram as a component. As such, the state diagram will be
explained in detail first.

A. State Diagram

The objective of this project was to have a user-variable
frequency played through a buzzer speaker. Four frequencies
within the human-audible range (20-20,000Hz) were chosen
and are selected be four unique states. The state diagram is
presented at top right. In this current configuration, the user
selects between four potential input states and is constrained
to always increment the states. That is, if the state is S1 the
only next viable state is S2. If the state is S2, the only next
viable state is S3. In this way, the user controls a ramping style
input into the buzzer speaker until it resets back to the lower
frequency value and starts again.

Figure 1: System State Diagram

 In addition to this “main” finite state diagram, the PWM

module contains its own individual diagram as well to control

its outputs. This is listed below.

Figure 2: PWM State Diagram

B. Block Diagram

Expanding upon the previously mentioned state diagram
is the block diagram that describes the overall functionality of
the system.

Figure 3: System Block Diagram

 Eight individual PWM modules, each with their own

assigned values for tPWM and DC based on the calculations

shown in Table 1, feed into the Main FSM component and are

internally selected. The output is then buffered by the counter.

II. EXPERIMENTAL SETUP

As stated previously, we used the Nexys Artix A7
programmable logic board to synthesize the sound. We
worked in the Vivado VHDL programming environment to
build and code. We created source files for all of our main
competes such as the counter, multiplexor, state machine and
pulse width modulations.

III. RESULTS

Overall, the board worked and functioned as it was desired
to. By flipping the SW[0] switch from low to high the user
can halt the ramp and prevent it from continuing the cycle,
instead holding its current position, and playing that
frequency for as long as the switch is high.

CONCLUSIONS

Because the implementation of this design is rudimentary,
further improvement on the system should likely be focused
on making the system more robust and user operatable. To

keep with the synthesizer theme, it would be interesting to add
components such that the FPGA board can be operated with
added affects such as delay, vibrato, flanger, or background
operations like an arpeggiator or rhythm line. Further states
can be implemented to increase the versatility of sounds,
going from only quarter notes to eight, sixteenth, whole or
otherwise by changing what the counter counts to or
increasing the number of counters in the system.

REFERENCES

IV. REFERENCES

[1] D. Llamocca, "VHDL Coding for FPGAs," Reconfigurable

Computing Research Laboratory, [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[Accessed 31 March 2022].

[2]D.Llamocca, "ECE4710: Computer Hardware Design," [Online].
Available:
http://www.secs.oakland.edu/~llamocca/Winter2021_ece4710.
html [Accessed 31 March 2022].

[3] D. Llamocca, Unit 3- External Peripherals: Interfacing

