
7-Segment Banner

List of Authors (Thomas DeSchutter, Alex Fillmore, Joshua Kulwicki)
Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: tmdeschutter@oakland.edu, afillmore@oakland.edu, jkulwicki@oakland.edu

Abstract—The purpose of this project was to

implement a scrolling banner on the eight 7-segment

displays present on the Nexys A7-50T. This project is

capable of displaying two messages at two different

scrolling speeds, both options selectable by a user

through switches present on the board. Additionally, the

user can hold a button to temporarily pause the scrolling

message, to be resumed when released. Another button

is used to reset the system entirely. The findings of this

project were that this system could be implemented

using components studied this semester in ECE 2700.

This includes multiplexers, decoders, a finite state

machine, counters, and a 4-bit parallel access shift

register. This project clearly suggests that powerful and

complex digital systems can be constructed out of

relatively simple components.

I. INTRODUCTION

This report will cover the methodology and
implementation of a scrolling seven segment banner with
different speeds on an FPGA.

The motivation behind creating a scrolling seven
segment banner was to deepen our understanding of finite
state machines and digital systems. The result is a functional
digital system that displays the power of the hardware used.
The end user can adjust switches to display different
messages as well as change the speed of those messages.

Many topics learned in this course were used in
completing this project. This includes the various hardware
components that were implemented in VHDL. Counters,
shift registers, decoders, finite state machines, multiplexers,
and a hex to 7-segment decoder are all important
components used in this digital system. The information
learned about these components and how they function were
integral in completing this project [1].

II. METHODOLOGY

For this project, the seven segment displays on the
Nexys A7-50T are used to display the scrolling messages.
Vivado was used to code the components that were needed
to make the scrolling banner work. Using a hex to 7-
segment decoder like the one used in the lab allowed us to
display the scrolling message on the 7 segment displays.
The most important component in the design of this project
is the shift register. This stores all the data to display the
message on the seven segment displays. It also helps in
making it appear that the message is being scrolled across

the displays. Another important component of this project
would be the finite state machine. This allows for sequential
control and is essentially the brain of the system. It controls
the 8-to-1 mux which selects the correct letter from the shift
register and controls which display is on. More detail about
the components is explained in the following sections.

A. Counters

Two counters were used to allow for the different
scrolling speeds. The two different speeds that can be
selected are 0.5s and 1s. The output of these counters is
connected to a 2-to-1 mux and they can be selected using a
switch on the FPGA. The output of this 2-to-1 mux is then
connected to another mux with the other input being tied to
‘0’. This allows the user to pause the message that is being
scrolled using a button. Finally, a 1 ms counter was used to
control the finite state machine [3].

B. FSM

The state machine was needed to control the 3-to-8
decoder and the 8-to-1 mux. This ensures that the correct
displays are on at the correct time and the correct letter of
the selected message is displayed. The output of this state
machine is used as the selector of the 8-to-1 mux and the
input to the 3-to-8 decoder. The inputs of the state machine
include the output of the counter and the clock.

C. 3-to-8 Decoder

The 3-to-8 decoder is used to select which display is on
at any given time. The input of this decoder is the output of
the finite state machine. This decoder converts that 3-bit
input to an 8-bit output that is used to light up the correct
display.

D. 4-Bit Parallel Access Shift Register

A shift register was used to shift the letters so that they
appear to be scrolling across the seven segment displays.
The shift register consists of d flip flops and 2-to-1 muxes.
This component selects the correct message to be displayed
when the user flips a switch. It also controls the speed that
the message is scrolled or pauses it based on input from the
user.

E. 4-Bit Parallel Access Shift Register

An 8-to-1 mux is used to select the output that is
displayed on the 7-segment display. In other words, which
letter of the selected message is displayed at any given time.
This is determined by the selector which is the output of the
finite state machine.

F. Hex-to-7 Segment Decoder

The output of the 8-to-1 mux enters the hex-to-7 segment

decoder. This is then responsible for converting the 4-bit

input to an 8-bit output that will display the correct pattern

on the 7-segment display.

Figure 1: Finite State Machine

III. EXPERIMENTAL SETUP

 The components required for this project were

programmed in VHDL using Vivado. The final design

Figure 2: 4-Bit Parallel Access Shift Register

was displayed on the Nexys A7-50T. Using Vivado we were

able to create a testbench to make sure the program was

working correctly. Using simulations such as timing and

behavioral allowed us to make sure the design was working

before implementing it on the FPGA. These tests were also

important because they allowed us to check that the timing

was correct so the messages would properly scroll across the

seven segment displays. After seeing the results of these

tests, we were able to tell if we needed to make

modifications.

IV. RESULTS

 After generating the bitstream and doing some debugging

of our circuit, we were able to get it functioning. We were

able to test it by adjusting the different switches and buttons

that we assigned the inputs too. A switch could be used to

select between the two different messages. The speed of the

scrolling message could also be changed by flipping a

switch. The message could be paused by holding a button or

reset by pressing the reset button. These were the expected

results. The results that we had were related to topics we

learned in class. For example, we learned that only one 7-

segment display can be lit up at once. However, by using a

very quick timer and a state machine to cycle through the

displays, we were able to make it appear that the message

was scrolling across the displays. We also learned a lot

about shift registers in class and that was a major

component in our project. We were able to implement a

shift register and see it in action.

CONCLUSIONS

 Implementing a digital system onto an FPGA can be

simple, but even small mistakes can completely change the

results. In specific, we ran into some timing issues with our

circuit. By creating a testbench and running simulations, the

issue was identified and fixed. We also learned that finite

state machines can be very particular. Our finite state

machine originally assigned a new output value when the

input from the counter was equal to 1. However, this was

causing letters and numbers to overlap on the 7-segment

displays. To fix this, we needed to assign a new output

value once it reached a new state [2]. One improvement that

could be made would be to simplify our code. In addition,

we could add more messages for the user to select or have

an option to have the message scroll the other way, etc.

REFERENCES

[1] VHDL Coding for FPGAs. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.
[Accessed: 14-Apr-2021].

[2] 7-segment serializer (four displays) [Online]. Available:
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Viva
do/Unit_7/serializer.zip [Accessed: 14-Apr-2021].

[3] Counter modulo-N (generic pulse generator) with enable and
synchronous clear [Online]
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Viva
do/Unit_5/my_genpulse_sclr.vhd [Accessed: 14-Apr-2021].

Figure 3: Final Circuit Diagram

