Battleship!

Brian Wills
Jonathan Nguyen

ECE 21808 Final Project |

OAKLAND
UNIVERSITY.

INtroduction

Summary Content List

e Main project goal: implementing the Base Design / Conceptual Planning

classic board game Battleship onto e (Components
an FGPA o Registers
o Comparator
o Serializer
o Multiplexers
e Battleship is a two-player game o Demultiplexers

where players trade turns trying to o Finite State Machine

sink the other's fleet of ships Project challenges/ revisions
Final Digital System Design

Sources

Base Design 7/ Conceptual Planning

e Gameboard was chosen to be a 7x7 grid
compared to typical 10x10 grid
o Rows are designated by letters,
columns by number (ex: A7, B5, etc)
o 7x7 grid as chosen for simplifying

the bits needed to store values

e Ships only take up one square vs multiple
squares in the normal game

e (Code will revolve around grid coordinates
and comparing coordinates vs ships and
misses

Components (Registers)

Two Types

Player Ship Location .

Miss Position

Ik

comparator49

Reqgister Close Up - Player L.ocation

Di[5:0]

clk

gs_reg[5:0]

en

CLR

O

10[5:0]
11[5:0]

neqOp_i
o

RTL_NEQ

s=1b0 10
S=default 11

CE Q

D

o}

RTL_REG_ASYNC
RTL_MUX

S=1'b0

S=default

} f_reg
RST
= C

CE Q

D
SET

’ RTL_REG_SYNC

S=1'b0

S=default

RTL_MUX

Reqgister

Close Up - Miss Paosition

0[S

et

Seadmt__11(30)

RTL_ADD

]

O3

RTL_MUX

RTL_MUX

RTL_MUX

ds_regi5:0]

c
cE

RTL_REG

p21_i
o

RTL_LEQ

c_regl3:0]
R

RTL_REG_ASYNC

RTL_REG

ASYNC

RTL_ROM

es20,

RTL_MUX

RTL_MUX

missmux

Components (Main Comparator)

e \What floats and what does not?

RTL_LATCH

i X dec49s_reg
| -; =
S=
decd9[5:0]
. RTL_LATCH
' G do[5:0]
- o o0
2

Comparator comparator

Components (Comparator, 48-bit)

e Where have you already shot?

TL_MUX

RTL_MUX

RTL_ROM RTL_REG_ASYNC

comparator49

Components (Comparator, 48-bit)

e Where have you already shot?

miss_i

g‘(RTL_MUX

miss1_i
1[5:0]

TRTLNEQ

comparator49

Components (Comparator, 48-bit)

e Where have you already shot?

comparator49

4x 7-segment display serializer
o Based off code from class
website/lecture notes

Displays player turn, current grid
position, and eventual player “win
screen’

Serializer is paired with a pulse
counter, two decoders, and a simple
FSM

o The hex -to - 7-seg decoder has
been slightly modified in terms of
how certain inputs trigger specific
displays

clk

seralizer_main

Components (Serializer)

AN([7:4]_OBUF _inst

|) seg7[6:0]

Components (Demultiplexers)

10[2:0]
1[2:0]

10[2:0]
*11[2:0]
s2

S=1b1
S=default

‘ S=1'b1
S=default
10[2:0]
© 1[2:0] ‘ !
muxcol2.
| S:?‘m

S=default
10[2:0] *

-l - 120 (= 'é"TRTLiMUX
decode5

decode5

Components (Multiplexers]

p1_i

S=1'b0 10[5:0]
0[5:0] p1[5:0]

S=default 11[5:0]
RTL_MUX
S
p2_i

S=1'b1 10[5:0]
0[5:0] p2[5:0]

S=default 11[5:0]

RTL_MUX

Components (Integrator)

choicepos[5:0]

choicepos[5:0]

Components (Multiple Input Or)

muxco[2:0]

s1[5:0] 10[5:0]

muxco[2:0]

s2[5:0] 11[5:0]

s3[5:0] 12[5:0] do[5:0]

s2[5:0] do[5:0]

s4[5:0] 13[5:0]

s3[5:0] s5[5:0] 14[5:0]

s4[5:0]

Components (Finite State Machine)

e FSM design is set to rotate between
player turns
e Has built in functions to check for:

o Ship count

o When a player wins -

o When a hit is scored o

o Handling coordinate input

o Handling duplicate coordinate input -
p2den

rmuxc[2:0]

)

N

I RILAND

_ | necnpi0 |
T RILAND
T
|

Components (Finite State Machine)

Project challenges/ revisions

Original plans had a VGA display interface and artificial player to be added to design
o Both were dropped due to complexity and lack of experience with combining VGA and VHDL
7-segment serializer was planned to be more elaborate (possibly using all 8

displays on FGPA)
o Revised plans to incorporate four displays similar to design from lecture notes due to
limitations of FGPA and handling of various inputs for displaying
Comparator design
o Massive amount (49-bits) to compare to keep track of ship locations as well as misses
throughout entire grid

FSM design

o Needed to be able to cycle between player turns without overwriting opposite player
components such is player input/registers/etc.
o Synchronization issues are the main source of constant revisions to the code, aligning each
signal up properly or working the code so that signals would not get crossed.
m (Circuit still contains timing bugs - crossing of synchronizing/signals miss-register
signals

Final Oigital System Design

ingliA
L.
|

|

I
i
[
I

e

i

"ﬂi’i’
00 Y s
—

E

Iﬁ i
‘ 1

\ Surrogate Demo

Thank You for your \
time. Any AQuestions?

Sources/ Citations

e Title Picture
o https.//www.microsoft.com/en-us/p/battleship-war-tactics/9pnnrihvws95?activetab=pivot:
overviewtab
e VHDL Resources
o http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
o https//www.ics.uci.edu/“jmoorkan/vhdlref/contents.html
o www.stackoverflow.com
o Free Range VHDL Book by Bryan Mealy and Fabrizio Tappero
e Battleship Info
o https:/en.wikipedia.org/wiki/Battleship (game)
e OUEmblem/Logo

o https://oakland.edu/about/ou-motto-seal-and-logo/

https://www.microsoft.com/en-us/p/battleship-war-tactics/9pnnr1hvws95?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/battleship-war-tactics/9pnnr1hvws95?activetab=pivot:overviewtab
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.ics.uci.edu/~jmoorkan/vhdlref/contents.html
http://www.stackoverflow.com
https://en.wikipedia.org/wiki/Battleship_(game)
https://oakland.edu/about/ou-motto-seal-and-logo/

