4-Way Traffic Signal

Jack Noble, Alton Kadow, Sean Koepf, Ravi Prajapati

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, M1

e-mails: jacknoble@oakland.edu, rprajapati2(@oakland.edu, skoepf@oakland.edu,
altonkadow(@oakland.edu

[. INTRODUCTION
To construct a 4-way traffic signal, we
will need 12 LED’s (three for each
intersection). An internal clock will
count up to a preset time, which will then
change which lights will be switched on
or off. Each of the three lights on each
side will have it’s own time interval
(yellow being the shortest duration). In
the intersection, the lights opposite each
other will be programmed to have the
same signals displayed, while the lights
perpendicular will wait on red, then vice
versa. This gives the intersection the
most efficient flow of vehicles.
For our final project we created a four
way traffic light, in order to do this we
will have to code them to face four
directions, one for each cardinal
direction. The north and south facing
lights will be timed to always be the
opposite of the east and west with the
exception of a delay when either set of
lights turn red. We have several members
working in the automotive business and
we are passionate about making cars as

secure and safe as possible. Nowadays
with distracted drivers it is very
important for road safety systems to be
working at their optimal performance. A
traffic light being out of sync or
inaccurate could potentially cause
devastating accidents. When a light is
not correctly timed for the road it could
cause traffic jams everywhere. These are
things that we would always like to
avoid. This is why we settled on a traffic
light being the perfect option for our
group. We will be using a finite state
machine, a clock, and combination logic.
These are all things that we learned in
this class that apply to our project. Most
of our project will be following things
we learned already in the class. This
traffic light could be used on non-busy
roads that don’t need a left turn light.

II. METHODOLOGY
The 4-way traffic signal will have a total
of 12 lights that will need to be
controlled. The naming of these lights in
the scope of this project will consist of

mailto:skoepf@oakland.edu

the traffic direction each light will be
controlling. The lights will be named
North, South, and East, and West for
each direction that has a light
respectively. Each light will have a bit
length of 3 bits, each being “XXX”, an
example of a red light would be “100”,
and an example of a green being “001”.
We gleaned that this would be an
efficient way to write the code, from an
offered YouTube video from 2012, which
had as an example a rudimentary version

of the circuit we wished to construct.

Initialization of FSM & All States
A finite state machine and counter will
be used to control which lights will go on
and which will go off.

case state is
when all_red nn =>

north <= "100";

south <= "100";

east <= "100";

west <= "100";

if counter = ((l0**8)-1) and sel ="00" then
counter <= 0;
state <= all_off;

elsif counter = {(l10**8)-1) and sel = "01" then
counter <= 0;

0*4%3)-1) and sel = "10" then

2lsif counter = ((10%#8)-1) and sel = "11" then
when all_off =»

west <= "000";
if counter = ((l0**8)-1) and sel ="00" then
counter <= 0;

Example of FSM case-statement code

[II. EXPERIMENTAL SETUP
Before we started coding our final
project, it was clear to us that a Finite
State Machine (FSM) would be used to
run the majority of the logic. A rough

sketch of our desired outcome was drawn
out on paper, and was used throughout
the entire process. We did have to
experiment with the counter to get the
correct timing we wanted out of it. To
make the coding shooter, we tried to use
the code for north and west on south and
east because the north and south will
always have the same values, and the
east and west will always have the same
values.

Block Diagram of Circuit Structure
This unfortunately caused more

problems than it solved, so we controlled
each one separately. We used the circuit
above to allow for a synchronous clock,
counter, and fsm, as well as output the
lights all together on the proper timing.
The counter used was modified based off
of the counter provided to us during lab 6
of the semester.

IV. RESULTS
After some trial and error to see what
works best in our case, we achieved the
results that we were hoping for. After
achieving our goal we even added a
couple more functions. We got the
counter to cooperate with the internal

clock of the FPGA which allowed us to
pause our traffic lights at various
instances for any amount of time within
one second intervals. This was crucial to
our project because without being able to
pause the lights, the process would
happen so fast it would not be
recognizable, rendering it useless. The
lights worked flawlessly in the end, and
as long as it is viewed in the right
orientation, the traffic patterns are clearly
visible, as we were hoping.

Conclusions

The takeaway from this project is that
traffic control is a very important part of
everyday life and it takes a good amount
of work to code and make sure things
like traffic lights are running smoothly.
We managed to create a really well timed
light for a mediumly busy intersection.
We could look into busier roads that need
to have left and right turn lanes. This
would just require more steps and more
lights than what we had available.
Another issue that has yet to be solved is
how this light would be timed in
concurrence with other traffic lights
around it to make sure there isn’t too
many jams between lights. In conclusion,
while we have all of these things we still
could consider, our light does work for a
four way stop. It changes for rush hour
and can change to blinking red at night,
or blinking yellow in hazardous
situations. We learned in this project that

Vivado can be used to make a well
functioning traffic light.

References
1. TY - BOOK
AU - Khan, Aamir
AU - Mallet, Frédéric
AU - Rashid, Muhammad
PY -2015/06/11
T1 - Modeling SystemVerilog Assertions
using SysML and CCSL

2. LBEbooks. (2012, November 12). Lesson 92
- Example 62: Traffic Light Controller
[Video]. YouTube.
hitps://www.youtube.com/watch?v=6_Rotnw

LhFM

3. “VHDL Code for Traffic Light Controller.”
Fpgadstudent. Com,
https://www.fpgadstudent.com/2017/08/vhdl-
code-for-traffic-light-controller. html.
Accessed 18 Apr. 2021.

4. https://forums.xilinx.com/t5/Implementation/
traffic-light-controller-nexys4

https://www.youtube.com/watch?v=6_Rotnw1hFM
https://www.youtube.com/watch?v=6_Rotnw1hFM

ECE 2700 FSM

April 15, 2021

resetn=0

nsg_ewr, Nsy_ewr, Nsr_ewg,
nsr_ewy, all_red, all_yel,
all_off <=0

nsg_ewr<=1 nsg ewr<=1
all_red<=0 all_red<=0

nsg_ewr<=0 nsg_ewr<=0
nsy ewr<=1 nsy_ewr<=1

nsy_ewr<=0 1 nsy_ewr<=0 nsy_ewr<=0
nsr_ewg<=1 b all_red<=1 all_red<=1

nsr_ewg<=0 nsr_ewy<=0
nsr_ewy<=1 all_red<=1 all red<=1

nsr_ewy<=0 nsr_ewg<=0

nsr_ewy<=1

