
Four-Way Traffic Control:
ECE 2700 Final Project
Isabella Bodmer: ibodmer@oakland.edu

Solana Brown: solanabrown@oakland.edu

Brikena Dulaj: brikenadulaj@oakland.edu

Dalena Vu: dvu@oakland.edu

mailto:ibodmer@oakland.edu
mailto:solanabrown@oakland.edu
mailto:brikenadulaj@oakland.edu
mailto:dvu@oakland.edu

Intro and Overview
For this project we decided to replicate a four-way

traffic control system by using both VHDL and our FPGA wired
to a breadboard with LEDs in place of the traffic lights. Our
project’s intended way to work is to replicate how a real-life
four-way traffic light would work. Our states include each
cardinal direction, North, East, South, and West.

Our circuit is off until a switch representing enable is
flipped. It starts with all light signals being red, while North and
South states coincide with each other and West and East
states coincide. We set up our circuit to run using a counter,
finite state machine (FSM), and a decoder. The counter slows
down the FPGAs internal clock to ensure our lights are left on
for a reasonable amount of time, not just flashing. The FSM is
used to determine which state the circuit is at and is then fed
into a 3 to 12 decoder, which interprets the state and outputs
the corresponding LED sequence deciding what LEDs are on
and what color.

https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5
eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWU
v6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&eh
k=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=Img
Raw

https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWUv6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&ehk=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=ImgRaw
https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWUv6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&ehk=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=ImgRaw
https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWUv6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&ehk=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=ImgRaw
https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWUv6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&ehk=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=ImgRaw
https://th.bing.com/th/id/R94cabd3e003bee423a6c5e31d35298de?rik=%2bGYgdI5eCjzJtg&riu=http%3a%2f%2f2.bp.blogspot.com%2f-L4BqbTWK84c%2fUP1I3YWUv6I%2fAAAAAAAAAOg%2fvFp3XFax_Uk%2fs1600%2f4-way%2bJunction.jpg&ehk=VINW2vNyuuNm3kFsx4qGWgPG0b0kzUg4TxOMuYqDN4A%3d&risl=&pid=ImgRaw

Block Diagram

Circuit Description Diagram

Algorithmic State Machine

The ASM describes the logic behind the finite state

machine used for this project. The input to start the

states cycle is resetn = ‘0’ which initializes the first

state S0 that’s the moment when all the lights are off.

Then an enabler is used to move the current state into

another. Every state waits for the input from the

counter to reach it value and then once that condition

is met it moves to the next state where the same

conditions apply. In the last state the process cycles

back to state 1 unless the enabler is off where the

default state is S0 where all the lights are off.

Counter

The counter intends to slow down the internal clock signal from nanoseconds to seconds. The clock signal will be fed into the counter
first, and the counter’s output is a slower clock signal that will be fed into the FSM, and then from that point used as that standard
measurement of time. We decided to initially use a six-bit BCD counter but then increased the number of bits to 31 according to what
the output would be in seconds. Since the default clock is 100MHz the default time of this counter would be nanoseconds which was
too fast for us to see a difference. The output Q from the counter then goes into the FSM to signal the duration that the current state
should last. While Q could have been left in BCD we agreed that converting it to integer using the formula (2^n)-1 would be easier to
implement

State Table

To describe our states we made a table showing the time

duration, the name of the state, and which lights are on in

that state. S0 is when enable is 0 and all lights are off. For

the rest of the states enable =1. S1 is when all lights are red

for 3 seconds. S2 is when north and south are green while

east and west are red for 10s. S3 has north and south yellow

and east and west red for 5s. For S4 all lights are red for 3

seconds again and after that the states repeat the process

but this time for east and west.

En

0

1

1

1

1

1

1

FSM

The timing and settings for the lights

are based on which state the device is

in, making the FSM the central part of

our design. For our FSM, we had all

agreed on having seven states. It uses a

switch representing enable as its input.

If the E=0, all lights are off, and it’s S0.

If the switch is on, the circuit will

progress through the states cycling

from S1 to S6 and back to S1.

Decoder

For our decoder we decided to use a 3 to 12 decoder. That way when the FSM
outputs the three-bit value corresponding to the state it’s in, the value would
then feed into the decoder causing it to output the corresponding number
and the correct twelve-bit value can then be sent to the LEDs.

Breadboard Setup

After looking at the manual for the
Nexys A7, we decided to use the JA and JB
pins to interface to the breadboard. The top
half of the board was grounded through the
JA ground port, and the lights on the top half
were then wired to JA pins 1-4 and 7-8.
Meanwhile, the bottom half of the board was
grounded through the JB ground port, and
the lights on the bottom half were wired to
JB pins 1-4 and 7-8. Each LED is wired to a
ballast resistor to limit the current running
through it. After taking the LEDs
recommended current and our boards
output voltage into account it we decided to
use 100 ohm resistors to accomplish.

Simulation Results (simulated in ns for better view)

Demo

https://linksharing.samsungcloud.com/

qELnwCAHSxzO

Board is activated by the flipping of the

enable switch (switch 15)

https://linksharing.samsungcloud.com/qELnwCAHSxzO
https://linksharing.samsungcloud.com/qELnwCAHSxzO
https://docs.google.com/file/d/10YhZNZnjE5H48mfpg2eIqVdsXdHY7lCa/preview

