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Abstract—The objective behind this project is to design a fully 

functioning and effective digital stopwatch onto a FPGA board 

using every seven-segment display and featuring key 

specifications. Each seven-segment display is operated by a 

designated counter. This counter’s count, or output bits every 

increment, is converted into a configuration which will light up 

the LEDs on the display to visualize that desired number. A 

random access memory emulator is used to control the lap 

feature. Through the use of registers and a Finite State Machine, 

each component of the design can piece together to complete the 

desired count. Each of the fundamental components worked 

perfectly to combine different aspects of digital logic design in 

order to implement the stopwatch. It was observed that the use 

of a random access memory(RAM) emulator proves more useful 

than initially expected. The project could have been improved 

by adding more laps, given additional registers were added, or 

researching a more efficient method for creating the laps.     

I. INTRODUCTION 

This project details an extensive design and 
implementation of a digital stopwatch with provided lap 
functionality. Given the process of designing this project, the 
required components, various results, and decisive 
conclusions will be explained or demonstrated. 

 The purpose of this project is to create a digital stopwatch 
with various features using VHDL. The stopwatch will have 
start, stop, reset and lap features. Eight 7-segment displays 
will be utilized on a Nexys-4 field-programmable gate array 
(FPGA).  

The desire behind this project is to get more depth into 
how the clock functionality is implemented using FPGAs and 
to observe how registers can store and eventually display 
desired outputs. The stopwatch will utilize Finite State 
Machines (FSM), counters, registers, and a seven-segment 
serializer, which involves a variety of sub-components as 
well. A basic background of VHDL along with port mapping 
and generic mapping can be used to complete most of the 
applications required in this stopwatch.  

A stopwatch can be used in everyday activities for tracking 
the count or certain timing of an action. Stopwatches are 
mainly found in phones, wristwatches, or specific training 
type clocks found in some sports training. Some of the 
challenges posed that will be encountered during this project 
include implementing a proper method for storing and 
displaying required laps, and creating a stopwatch adequately 
visible, time-wise, given a common anode setup for the 
displays within the board.  

II. METHODOLOGY 

A. Top File 

For the purposes of this design, a datapath circuit and a 
FSM can be used to create the entirety of the stopwatch. The 
top file can be broken down into three main components, 
which can be utilized of create a top file implementation. The 
inputs consisted of a pause switch, a reset button, two address 
switches, a store lap switch, and a show lap switch. Each 
register, counter, and FSM in this design is controlled by the 
same clock and resetn signal. Those on-board switched 
corresponded to a few substructures within the design. The 
pause switch is vital for being able to control the overall count 
on the visible display, while the address switched are able to 
choose which register the current lap is stored to. The store 
and show lap inputs toggle a current lap into a register and 
displays the lap, respectively. Overall outputs of the stopwatch 
simply consisted of the common anode control on the seven-
segment displays as well as the converted data fed into each 
display accordingly. The three components, counting element, 
lapping, and serializer, each serve to maintain a continuous 
flow of the count or enable the ability to store a lap. The top 
level block diagram is shown below in Figure 1. 

 
      Figure 1 – Complete Block Diagram  

B. Counting 

While this digital stopwatch utilizes a total of ten counters, 
the counting function itself is implemented through the use of 
nine modulus counters. With a total of eight seven-segment 
displays, the maximum time that can be displayed is 99 hours 
59 minutes 59 seconds and 99 hundredths of a second. One 
modulus counter will be directly responsible for producing the 



increments of the stopwatch. Since the Nexys A7 has a built-
in clock of 100MHz – or a 10ns period – this counter is used 
to adjust the 10ns to the correct stopwatch increment of one-
hundredth of a second (0.01s) [1]. 

To effectively account for the maximum digits that can be 
counted, two types of modulus counters are utilized: six BCD 
counters and two modulo-6 counters. The BCD counters will 
serve to count from zero to nine. On the contrary, the modulo-
6 counters will serve to count from zero to five. This is due to 
the nature of time, since a stopwatch increases from 59.99 
seconds to a minute, and similarly at the hour mark. In other 
words, when a specific counter reaches its maximum count, 
the next counter is directly affected. Therefore, the tens place 
for minutes and seconds will utilize a modulo-6 counter, while 
the rest will utilize a BCD counter. The given input for this 
part of the stopwatch will be a designated start/stop switch. 
For simplicity, this input can be seen as the pause input. For 
each counter to increment correctly, the initial counter will 
control the enable of the smallest countable increment. In this 
case, the smallest count is 0.01 second, so the controlling 
modulus counter will thus have a count up to that of 106 to 
achieve this desired timing. 

Whenever the pause switch is activated or switched to 
high, the controller counter must cease counting to stop the 
entire stopwatch at that exact time. To obtain this desired 
effect, a not gate is inserted before the enable of the 
controlling counter so that when the pause switch is active 
high, each counter ceases its count. An output from the 
controller counter, called z for most generic counters, is 
connected to the system’s first BCD counter as its enable. This 
z signal coming from the 0.01 second counter will contain a 
very short pulse every time the counter reaches its highest 
count. So the first counter after the controller will only 
increment with the count of the controller. Every other 
moment, its enable will be low. This concept is how every 
counter increments properly based on which segment of the 
stopwatch it should be counting for. 

Naturally, it would seem as though the output of the first 
stopwatch counter will feed into the enable of the next 
counter, or the counter holding .10 place’s value. This is 
partially true because each subsequent counter requires the 
outputs of the previous two counters to know if it has reached 
a point to increment the count. Each subsequent counter will 
have its enable controlled by the AND operation between the 
previous counter’s z pulse and its enable. This will maintain 
the proper counting design and ensure the stopwatch freezes 
the count when the stop switch eventually goes high. In 
summary, the following counter’s enable is controlled by the 
previous counter’s enable ANDed with the previous z pulse. 
With each of the counters working and incrementing properly, 
their separate outputs can be fed into the remaining 
components to combine the entire design. A separate 32 bit 
bus, combining all the output bits from each counter, will head 
to the RAM emulator. The counting component is seen in 
Figure 2.  

 
     Figure 2 – Diagram of Counting Component 

C. Lap Function with Random Access Memory Emulator 

A unique feature of this stopwatch will be the lap 

functionality. The idea behind this is that, for however many 

laps, a certain elapsed time will be held in the “memory” until 

requested or used at a later time. This concept will be 

designed into the stopwatch using a few ideas learned 

throughout the course. For this stopwatch, four different lap 

inputs will be available to be stored and displayed as needed. 

To implement this function, a general concept of a random 

access memory emulator is used [2]. In this design, four 32 

bit registers are used to each hold a single lap. This provides 

a total of four laps during the use of the stopwatch. The input 

data into each register originates from the 32 bits which are 

combined from the eight counters in the previous section.  

The RAM emulator begins with a decoder containing the 

address inputs as the main data and the store lap input as the 

enable of the decoder. The address is able to be controlled by 

switch 2 and 3 on the board, which corresponds to two bits, 

since two bits can represent the four different registers. A 

decoder works to create a single high bit, depending on the 

input data, in a respective bit position on the output into 

which it is feeding. For example, when the address is set to 

01, the decoder output 0010 since the desired bit position in 

this case is one. Each register enable is controlled by this 

decoder to achieve the desired store behavior into whichever 

register is chosen. The address bits essentially selects which 

register the lap will be stored to through the use of this 

decoder. However, when the store lap switch is low, the 

enable of the decoder will be low and output zeroes to each 

enable of the registers.  

In order to write the 32 bit data into the register, the store 

lap switch must be switched high then low. When the store 

lap is high, the data is constantly flowing into whichever 

register is currently selected and the lap count is not yet 

captured by the register. It is not until the store lap switch is 

back to low until the register writes and maintains this lap 

until either reset or given a new data.  

The outputs of the four registers are fed into a four to one 

multiplexor. The select line of this multiplexor is controlled 

by the same two address bits that feed into the decoder. This 

is so that, when a register is chosen based on its address, the 

output of that register will also be selected by the multiplexor 

and serve as the output of the RAM emulator. While the 

RAM component usually has an enabled controlled 

multiplexor, this can be avoided since the serializer will be 

able to choose if the data coming from the RAM is purposeful 

or not. The decoder, registers, and multiplexor all create the 

RAM which controls the lap function at all times. The RAM 

is shown in Figure 3.  



 
Figure 3 – Random Access Memory Emulator Diagram 

 

D. FPGA Displays 

All the seven-segment displays on board the Nexys A7-

50T FPGA board will be used during this project to display 

the stopwatch timing. Due to the connections made on FPGA, 

each of the seven-segment displays cannot be turned on 

individually using a common anode method for each display. 

Instead, they are all connected using the same input, and if 

wanting to display different data on each display, an 

alternative method must be used. A trick to solve this problem 

would be to turn on the display individually, with all the 

others disabled, for a very short period with the desired data 

feeding into that display. It happens that the consensus for 

this amount of time should be one millisecond [1]. Because 

the display refreshes at such short time, to the human eye, it 

will have the same effect of all the displays being on 

simultaneously and show the expected outcome on all of the 

seven-segment displays. It is now a matter of figuring out 

how to turn on each of the displays at the right time, and 

feeding the right input into those displays in the same time 

interval. 

E. 7-Segment Serializer  

Given the problem encounter in the previous section, a 

seven-segment serializer does exactly what is required, with 

the components contained within it, to solve the issue [3]. The 

serializer is composed of a multiplexor, a counter, a Finite 

State Machine, and two decoders. Using the anode input of 

each display, we can control which one is enabled while the 

rest are disable. An eight-to-one multiplexor can usually be 

used to decide which four bits of data will be displayed. 

However, this is for the case with a stopwatch without the 

laps. Instead, two eight-to-one multiplexors can be 

implemented, alongside a separate two-to-one multiplexor.    

The bits that originate from the counters at the start of this 

design, with their output of four bits, feed into one of the 

eight-to one MUX inputs. This MUX will feed directly into 

one as one of the inputs for the two-to-one MUX. For the 

other eight-to-one MUX, the inputs in this case will coincide 

with the 32 output bits from the RAM lapping component. 

Here, the 32 bits are broken apart into 4 bit components. The 

four least significant bits act as the first input into the MUX 

and this dividing of bits continues up until the last input of 

the MUX. The 32 bit bus is broken apart into eight four bit 

buses so that the MUX can select between the counter bits 

just as the other eight-to-one MUX. This output feeds into the 

other input of the two-to-one MUX. The select of both of the 

eight-to one- MUX will be controlled by the finite state 

machine to properly decide which of the eight data 

connections are allowed through. 

After feeding into the two-to-one MUX, the show lap 

switch will act as the select in this case before encountering 

the main conversions of the serializer. When the show lap 

switch is low, the two-to-one MUX will continue to display 

the data coming from the main counters, and the stopwatch 

will run smoothly the entire time this switch is low. When 

changed to high, the MUX will instead allow the data coming 

from the RAM to pass into the serializer. So only when the 

show lap switch is high, the laps for any of the registers can 

be seen, as the stopwatch displays the lap time. If the 

stopwatch is not paused, it will continue to count in the 

background, regardless how long the lap is shown. The output 

of the two-to-one MUX will then feed into a BCD to seven-

segment display decoder in order to convert the bits into a 

desired active low configuration for each distinct LED on the 

display to light up the right number. 

To separate enables between the displays, a counter timing 

for one millisecond is needed to at least control the enable of 

the finite state machine. This counter will contain a count of 

105 to achieve this timing value. The output of the FSM will 

connect to each of the eight-to-one multiplexors, and into a 

three-to-eight decoder, which will in turn connect with the 

anode of the displays. This is required to turn on the displays 

with their respective input. For example, if the select is 101, 

the 5th input into the MUX will be allowed through into the 

displays, but those bits should be displayed on the 5th display 

only as well. The decoder will ensure that all the other 

displays are off except for the 5th, and those bits will end up 

flashing their corresponding number for 1ms until the next 

pulse arrives. The diagram for the entire serialize is found in 

Figure 4. 

 
 

   Figure 4 – 7-Segment Serializer Diagram  



F. Finite State Machine for Serializer  

As mentioned in the previous section, a FSM will be used 
to control the selects of a few components. The input of this 
FSM will be controlled by the output pulse z of the counter 
inside the serializer. The pulse z from the counter will feed 
directly as the input enable for the FSM so that when the 
counter reaches one millisecond, the machine will move to the 
next state and change the select output. With eight different 
inputs, there will be a three-bit select to choose between all 
those inputs, and therefore eight different states in the FSM 
[4]. Each state will hold a constant select value and wait for 
the next enable pulse to move to the next state. The 
Algorithmic State Machine (ASM) of this FSM is shown here. 

 
Figure 5 – ASM for the FSM within the Serializer 

 

III. EXPERIMENTAL SETUP 

In order to test the functionality of the project, a VHDL 
testbench was created for the top file using the software 
Vivado. Additionally, an external interface test was used on 
the Nexys FPGA board to visualize the stopwatch count. 

The testbench simulation was focused on showing the 
main count of the design. To efficiently see the results, the 

design itself can be minimized so that very long times are not 
required to be simulated in the waveform window. The 
alternative is to just have long run times, and this is due to the 
one millisecond counter controlling the FSM. The simulated 
waveform can be seen in Figure 6. 

 
   Figure 6 – Behavioral Simulation Waveform  
With the external interface, the Nexys 50T FPGA was 

required due to the project and XDC file being create for such 
a board. Once the board was plugged into the computer via 
USB and on, the hardware manager in Vivado was able to 
connect with the board. After the bitstream was generated, the 
stopwatch began to run without any issues. Each switch 
function was tested, and a lap was written and read to each 
register to ensure the lap was working properly. The design 
was expected to contain the stopwatch continuously counting 
until obstructed, and this was shown in both methods of 
testing. 

IV. RESULTS 

The functionality of the stopwatch worked as expected and 
the obtained results were enough to prove that the design 
works as intended. Every time the stopwatch design 
programmed onto the FPGA board and tested, it was 
consistent and unfaltering it the performance. Each designated 
switch indicated as an input served its purpose. There was 
some initial uncertainty with the RAM lap function and the 
inputs since there were some adjustments required to have the 
RAM work with the counting feature of the stopwatch.  

Some of the adjustments made in the components can be 
confirmed in their usage. The serializer in this stopwatch 
varies from the common serializer utilized in most cases. 
Adding the various multiplexors into the design proposed a 
new challenge as to whether the stopwatch and the laps would 
show at the right time. Using the RAM as the lap function 
proved very useful as well. If desired, many more registers can 
be added in order to add more laps into the design. The only 
limitation would be the input limited on the board interface 
used. 

When attempting to simulate this design using the 
testbench, it was difficult to create a waveform where all the 
desired signals are visible and correct. Some adjustments were 
required to get this outcome, but only due to minimization in 
the circuit itself.  

The FSM of the stopwatch worked perfectly to control the 
flow of the datapath circuit. It was able to control both input 
multiplexors of the serializer and continue to have the displays 
turn on at the same time. While the design performed perfectly 
in this case, the FSM may be able to adapt to a different design 
of stopwatch and have more control over the overall datapath 
circuit. 



CONCLUSIONS 

This project adequately counts up until the maximum 
count and can be expanded further using a board which 
contains more displays. When using the Nexys 50T FPGA for 
implementation, the design performed as expected and 
without any issues.  

For the purpose of storing data, a random access memory 
emulator is incredibly useful and can be used in any case 
where small amounts of data is required to be kept for some 
time. Eventually, the RAM will become too cumbersome with 
more addresses and a different method of implementation can 
be used instead. Similarly, the serializer can be changed to fit 
the needs of a design feeding many component outputs to the 
displays. With more components, the design can be 
inefficient, so the serializer can be made to simply use one 
multiplexor and instead change the component itself. In this 
case, one single multiplexor may be used to simply feed both 
the count and the laps into one single connection. This would 
require another FSM to control the lap inputs. 

When testing a design with larger increments of time, 
design minimization seems like a requirement and can be 
difficult to obtain desired results. This is a remaining issue to 
be solved. Additionally, having a simulation which displays 
the laps as well as the count proved difficult as well, and an 
adequate solutions will have to be found to avoid this problem 
in the future. 

This project can be improved by trying to condense the 
lapping function into a more efficient subcomponent overall. 
When considering the exponential increase of the RAM, the 
design may become too repetitive and inefficient for 
continued implementation. With more desired addressed, the 
number of registers needed continues to increase. In this 
design, a few registers with a FSM control can replace the 
component. 

With that being said, the project still performed in an 
outstanding fashion with a unique design. The digital logic 
design knowledge obtained throughout the course was vital in 
completion of the project. This project can further push to test 
the horizon of hardware design overall in further studies.  
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Figure 7 –Enlarged Behavioral Simulation Waveform  



 
 

 

Figure 8 –Enlarged Top File Diagram 

 

 

 

 
 

 

Figure 9–Enlarged Counting Component  

  

Demo URL: https://www.youtube.com/watch?v=NXjo55t8gvE&ab_channel=MarissaToma 
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