3x3 Matrix Multiplier

List of Authors (Stone Maguire, Jared Panizzoli, Kelly Koscielski)
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI
e-mails: stonemaguire@oakland.edu, jpanizzoli@oakland.edu, kellykoscielski@oakland.edu

Abstract—3x3 matrix multiplication which stores each sector of
the matrix in memory, multiplies the values individually, and
then decodes from hexadecimal to be able to display on a
7-segment display. Each row of the resultant matrix is
displayed at one time on the 7-segment displays of the FPGA
and the three rows can be displayed by flipping the respective
switches.

I. INTRODUCTION

The 3x3 matrix is designed to create an issue free matrix
multiplier. While doing matrix multiplication by hand, there
is room for human errors along the way. With this 3x3
multiplier designed in Vivado and using the Nexys board,
there is no room for human error. Since this 3x3 matrix
multiplier can only go from 0 to 7, it will be used for
smaller projects where the numbers may not be so high.

The purpose of this project is to implement a 3x3 matrix
multiplier using VHDL on the Nexys A7 50T FPGA. The
design of this project is greatly inspired by the Lab 5
Random Access Memory Emulator. Matrix multiplication
can be long and difficult, especially for a 3x3 matrix, to do
by hand and having a computer solve the calculations
required will eliminate any potential errors. For this matrix
multiplier, the user will select nine unsigned binary numbers
for each matrix ranging from zero to seven to store in the
registers. The numbers in the registers will be read and then
multiplied together using binary multiplication to create the
final matrix, which will then be displayed in hexadecimal on
the seven segment display located on the FPGA.

1I. METHODOLOGY

There are three main sections to the implementation of
the 3x3 matrix multiplier: Using switches to control the
matrices and input data into the matrix, the mathematical
operations being performed to solve the matrix, and lastly
displaying the resulting matrix on the seven segment
displays.

A. Controlling the Matrix Using Switches

For the 3x3 matrix, the Nexys A-7 50T FPGA will be
used, along with Vivado to write code for the matrix. A total
of 11 switches will be used. The function of these switches
are as follows: Two switches to switch between matrices,
one for each matrix, switch in the high position meaning
that matrix is selected. Each sector of the matrix will be
stored in a register, with a total of nine registers being used.
Four switches will be used to select each register to store a
number into. Three switches will be used to choose a

number to put into the matrix, zero through seven, that will
be then stored in each register. When both matrix enables
are low, writing to the registers is disabled, allowing the
values to be read, so the seven-segment display will be on.
To display each row, two switches will be used to select
which row of the matrix will be displayed on the seven
segment display of the FPGA in hexadecimal values, since
there are not enough seven segment displays to show all of
the values at once.

B. Mathematical Operations

To accomplish the multiplication of the matrices a six-bit
binary multiplier will be used. Each inputted number will be
sign extended three bits for a total of six bits each to account
for product results being greater than the three bits of the
numbers. Then using binary addition, the three resulting
values for each sector of the matrix will be added together
using full adders. The resulting values will each be stored in
a register, totaling eighteen registers. These values will then
go to a multiplexor, which will use the two switches to
select the row to be displayed.

C. Display of Data

To display each row of the matrix on the seven-segment
display, six out of eight of the displays will be used. Each
row is able to be displayed all at once using a counter, finite
state machine, and a 3-to-6 decoder. When the counter is
high, the finite state machine switches states. There are a
total of six states, one state for each value in the row of the
matrix. This change is happening every 1 millisecond. The
3-to-6 decoder is selecting which display is being lit up.
With changes being made every 1 millisecond, it appears
that the seven-segment displays are all lit up at the same
time, allowing for multiple numbers to be displayed at one
time.

I11. EXPERIMENTAL SETUP

A simulation of the circuit was done to show the output
of the matrix when certain values were inputted. The
numbers chosen to test the circuit were coded into the test
bench file. To begin, El, E2, resetn, s, address, and DI
signals were set to 0. Then E1 was set to 1 while keeping E2
at 0 so that matrix A could be written to the registers. The
values of DI were cycled through while changing the values
of address as well so that the data was going to the correct
registers. Then, E1 was set to 0 and E2 was set to 1 so that
this process could be repeated for writing the matrix B
values into the registers. Finally, E2 was set to 0 and the

values of s were cycled through to show each row of the
final matrix as seen in the simulation screenshot below. By
doing this, it allows the output values to be verified to check
the functionality of the circuit.

Then this circuit was tested experimentally on the FPGA
with the same values from the test bench, using the switches
on the board. The enable switches (E1 is SWI15, E2 is
SW14) were tested to be sure the board was reading and
writing to the registers at the correct times, verifying that the
seven-segment display turned off when an enable switch is
high and turned on only when both enable switches are low.
Then, the switches for the register addresses (SW3-6) were
tested to choose which sector of the matrix the data will be
inputted in. After the data (SWO0-2) is inputted for each row
and column for the matrix, the switches for the multiplexor
(SW12-13) were tested to choose the row that is to be
displayed. Below is the simulation showing the output of the
matrix on the last row.

200.000 ns 400.000 n: 600.000 ns

I PR R T R A A T LA FE A

11011
1111111
FEEEEET)
FEEETET)
1111111

FEEEEETY

Simulation with matrix inputs

I\A REsuLTS

The following matrix was inputted into the FPGA in
order to test the functionality of the circuit to get an
outcome of the correct resulting matrix. The result is also
seen above in the timing diagram simulation for the circuit.
The overall block diagram of the circuit with all the
components connected together can be seen at the end of
this report.

2 4 2 7 3 1
5 0 6(X|4 6 0
7 4 3 3 5 2

Inputted matrices in decimal

24 28 06
35 2D 11
44 3C 0D

Resulting matrix in hexadecimal

CONCLUSIONS

There was a lot of planning involved in the process of
creating the 3x3 matrix multiplier, especially when it came
to deciding how to input values into the matrix and to
display the values of the matrix.

In the end, the 3x3 Matrix Multiplier successfully
multiplied two matrices together and displayed each row
correctly on the seven-segment displays one at a time.
Although there were some challenges faced in the process,
the final outcome of the project correctly demonstrated the
plan of how the multiplier was to work. The biggest
challenge was determining how to display an entire row of
the matrix at once. This called for the use of a counter with
a finite state machine and 3-to-6 decoder in order to make it
work.

REFERENCES

[1] D. Llamocca. Digital System Design [PowerPoint slides]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.h

Resetn_ |

Matrix A Matrix B
—E g
e 0 0
3x3 J : i an
—ie El—]
—lpo | 2 . - 3 | of—
Lk 6-bit Binary Multiplier 4 |
—> 2 q Q@ 2 of—
—<; ‘ Register ;'—
—i0 3 Q] i A @ 3 Do
3 £ e
b Yy Q4 of-H|L
Address ;JE, 8-bit Adder = ladaress
T pecoder I 5 E——]Decoder %
Enavee |, ::‘L? 5Q o= Enable
il 4[]
o0 H 5 3 [CH
E e—
o 7 q R
L <
~t: 3 q 8 o—
——eeeeey
] “ “ 4 4 “_t "i—'{_, 't ! N i "
o 13 o 1] o o
0 [2 3 4 5 © 7 3 14 15 lo 17
Q Q Q Q Q Q Q Q Q Q Q
N I N N N N L T 1
N
2 Select 2 \ MUX
[]
>
4 J— — —_— o— — —_—
e e
- e e = ! |0]]
3-to-6 =] | | = === |
Decoder Segment
Finite State Decoder]“"“” ,[NM) wut) TM (0] Ibuf(\) '[Mm
, Machine buf ©

Block Diagram

Resetn=0

