
Number Cruncher

(List of Authors (Mohamad Abbas, Paul Shammas, Feras Zari)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: mabbas@oakland.edu, pshammas@oakland.edu, feraszari@oakland.edu

Abstract— The purpose of this project was to create a simple

calculator using the Nexys 4-DDR board along with the skills

we leaned while programming and implementing in Vivado

throughout the semester. This calculator will allow basic 4-bit

math operations to be computed such as addition, subtraction,

multiplication, and division. We found that programming a 4-

bit rather simply when it comes to addition, subtraction and

multiplication but becomes more complicated when

implementing division.

I. INTRODUCTION

For this project we designed a basic number cruncher that

can compute numbers no bigger than 4-bits. The number

cruncher first takes two 4-bit positive number and through

are circuit design either adds, subtracts, multiplies or divides

and displays the answer on a seven-segment display.

We decided to build a number cruncher that does simple

arithmetic because basic math is the foundation of all

engineering. We used almost all concepts learnt in class to

implement our design including all digital logic gates,

building components such as multipliers and registers,

structural VHDL and finite state machines.

The application of our project is simply, to help people

do basic arithmetic.

II. METHODOLOGY

A. Design

The top-level design of our project included 11 different

components. We have four major components that

perform the arithmetic operations. We also built a

multiplexer which selects the arithmetic function

requested and we used a seven-segment display which

displays the answer and the inputs. To better understand

the design a block diagram of our design is shown in

figure 1

Figure 1: Number Cruncher Block Diagram

B. Operations

The addition component consists of 4 full adders with

the input of it being A and B from the switches. Coming

out of the addition portion is 4 bits with a cout of 1 bit

which was concatenated using the 3 bits from the left.

The subtraction component includes 9 full adders and 4

not gates. The result of the subtraction will always be

positive as the number cruncher only accepts unsigned

binary numbers. The multiplication component had a

very simple design consisting of just 12 full adders. [1].

The division component is a large one. The division

component included a 4-bit left register, a register that

accepts input from the switches of the FPGA, a left shift

registers with SCLR, finite state machine, adder, and a

counter. The left register shifts and accepts 4 bits and

also outputs 4 bits. Another register is included that is

related to the b input and takes in only 4 bits. Next the

Finite State Machine (FSM) was construed with 3

different states. Using items learned in lab 6, a counter

which counts from a 0-3 output was designed. Instead of

having a hex to 7 segment component which was

mandatory in lab 6, our designs output from the left shift

register went straight to the 4 to 1 multiplexer and the

reminder goes to the LEDs on the board. The addition,

subtraction, multiplication and division components

were designed separately and all feed to a 4 to 1 mux.

The 4 to 1 mux consists of a 2 bit select line which

corresponds to SW11-S10 on the board. The inputs are

two 4-bit numbers and the output is 8-bits. A binary to

BCD converter accepts bits from the 4 to 1 mux, which

takes 8 bits in binary and outputs a 10-bit BCD number

using 2 loops. From the BCD converter, a 5to1 mux was

implemented. The reason behind the 5 to 1 mux was to

take two select between 5 different inputs. The inputs of

the 5 to 1 mux are as follows: A and B inputs taken from

the switches of the FPGA, then we split the 10-bit output

of the binary to BCD converter and broke it into three

separate 4-bit numbers. Bits 10-9 were concatenated

“00” and represents the 100s place, bits 7-4 represent the

10s place, and bits 3-0 represent the 1s place of a 3-digit

answer to the calculation. To control the select lines, a

counter was used. The counter outputs 3 bits. By

designing it like this, we were able to display one digit at

a time on the seven-segment display, but fast enough so

it appears as if the inputs and the 3-digit result are all on.

The output of the counter feeds into the 5to1 mux and an

anode encoder. A mux to seven segment decoder takes

the 4 bits from the multiplexer and converts them to

seven bits which get displayed on the seven-segment

display.

III. EXPERIMENTAL SETUP

For the testbench, five combinations were implemented for

each operation so a total of 20 combinations were built and

simulated. This was tested to determine that the right values

were being displayed on the simulation

IV. RESULTS

The number cruncher provided many different challenges

for design and implementation. Each component was able to

be construed using the knowledge of previous labs and a

little bit of figuring out and repetition. In the figures below,

there are a few different highlighted basic math operations

that were performed.

Figure 2: Addition 15(F)+12(C)=27

Figure 3: Subtraction: 11(B)- 8= 3

Figure 4: Multiplication: 13(D)*15(F)= 195

Figure 5: Division (SW5 ENABLED):

15(F)/6= 2 remainder 3(LEDS)

CONCLUSION

The Nexys number cruncher consisted of many fragments

such as the multiplier, divider, adder and subtractor. Each

fragment consists of several sources that give each fragment

its own respected task. All of these are summed up and put

together into the top file and programmed into a Nexys 4

DDR board. The number cruncher was coding intensive, the

adder and subtractor were simple. However, the multiplier

and divider required a lot of work and research the divider

in particular stood out to be the most challenging portion of

our project due to the several sources that were required to

design it. Lab 6 was referenced many times to code the

divider and lab 4 was referenced for the majority of the

project. A few improvements that could have been made to

the project was having the number cruncher registering the

previous number that was calculated so a new form of

arithmetic can be done to it. Throughout designing the

project, the group strongly considered this and were seeking

ways to implement this design into the number cruncher.

The goal was to make the Nexys number cruncher as close

to a standard everyday calculator as possible. After many

tests however, the group decided to move on from that

design source.

REFERENCES

[1] Llamocca, Daniel. “VHDL Coding for FPGA’s.” Reconfigureable

Computing Research Laboratory. N.p., n.d. Web. 4 APR 2019.

[2] “Nexys 4 DDR.” Nexys 4 DDR [Reference.Digilentinc],
reference.digilentinc.com/reference/programmable-logic/nexys-4-
ddr/start.

[3] LBEBooks, director. VHDL Example 19: 8-Bit Binary-to-BCD
Converter-for Loops. Youtube, 24 Oct. 2012, [3]
https://www.youtube.com/watch?v=VKKGyOc4zRA.

[4] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 1

[5] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 2

[6] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 3

[7] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 4

[8] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 5

[9] DIGITAL LOGIC DESIGN VHDL Coding for FPGAs Unit 6

[10] Lab 4

[11] Lab 6

[12] Lab 3

https://www.youtube.com/watch?v=VKKGyOc4zRA

