Keyboard Scan Code Computation

List of Authors (David Lewis and Andrew Meesseman)

Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI
e-mails: djlewis2@oakland.edu, ameesseman@oakland.edu

Abstract— The goal of this project is to create a device that
will interface with an external keyboard and complete
certain computer arithmetic calculations. A Nexys 4 DDR
FPGA was used to interface with a usb keyboard in order to
obtain two, two digit, Binary Coded Decimal (BCD) values
which were then added together, with the result displayed on
a few of the seven segment displays included on the board.
Although this project is not all that useful in a professional
engineering setting, the different components of the project
are all very good for learning concepts. Knowledge from the
labs were very useful when designing the architecture to
convert and compute using differentiating number systems.
Then, figuring out how the FPGA communicates with a
keyboard and multiple seven segment displays was good for
putting previously learned concepts to the test. Along the
way, the group developed skills around working on an
engineering project in a team as opposed to as individuals.

I. INTRODUCTION

This report will cover in detail the steps involved in
developing the device described above. VHDL was used to
control the FPGA, and all external interfaces were
controlled using VHDL in Vivado. Many logic components
were used when designing the “calculator” such as registers,
counters, decoders, and a finite state machine (FSM).
Components were also whose sole purpose was to
communicate with the initial keyboard presses and the
output displays. These components were all used in order to
create a few key elements. The first main element used the
keyboard components, registers, and decoders to take input
from the keyboard and convert it into a usable format for the
calculations. The second main element used number system
conversions such as BCD to Binary and Binary to BCD.
These conversion are made up of many smaller logic
components that do basic arithmetic. These arithmetic
components were then used again to perform the desired
calculation from the goal of the project. The final main
element was used to take the calculation result and display it
on the seven segment displays. This element made use of
decoders and counter/clock processes. Lastly, a FSM was

used to communicate between these elements and ensure the
circuit behaved in a desired manner.

How these elements were created, simulated, and tested
will be further discussed below.

II. METHODOLOGY

A. Keyboard Element

The keyboard module of the project receives a serial
data input from a PS/2 keyboard. Each key press, as well
as a key-up code that is sent when a key is released,
consists of an 11-bit package. The package consists of a
start bit of ‘0’, an 8-bit payload (LSB first), an odd
parity bit, and a stop bit of ‘1’. When a key is pressed
and released, a key-up code package is sent which
consists of a payload of 0xF0, followed by a package
containing the payload for the key that is pressed. The
scan-code for the numbers was found in the Nexys A7
Reference Manual [1]. In order to facilitate the data
transfer, the keyboard generates 11 clock transitions
when the data package is sent, with the data being valid
on the falling edge. Receiving a key press from a
number means that 22-bits of data will be sent, along
with 22 clock transitions. In order to handle this data, a
10-bit shift register receives and shifts all incoming data.
The final resulting data in the shift register is the 8-bit
payload, as well as the parity bit, and stop bit. An 8-bit
bus containing the payload is then sent to a decoder in
order to convert the values to BCD, with the decoder
created using the scan-code values found in the reference
manual. When all 22-bits of data are received, a done
signal is sent from the keyboard module which is sent to
a counter in order to increment the count. The
architecture of the previously explained can be seen
below.



PS/2 Data

Keyboard
Module

ctrReset 3 2 Bit
Counter

Decoder

clk —»!

ctrval

(FIGURE 1)

The circuit as a whole stores the values from four key
presses into four 4-bit registers. As each key press is
registered, the done signal increments the 2-bit counter. The
2-bit output from the counter is fed through a decoder which
enables the respective register to be written to. The decoded
BCD keyboard data, which is stored in a buffer, is
constantly fed into the four 4-bit registers and whichever
register is enabled is written to. Following four key presses,
the state machine (explained in Section F) disables the
registers from being written to and resets the counter. No
more key presses will be read after this point until a CPU
reset is enacted. As there are four registers and four 4-bit
signals, the first two and last two buses are combined into
two 8-bit buses. These two 8-bit signals are then sent to the
computation module. The architecture of the previously
explained can be seen below.

ctrval 4
Address
Decoder 4

‘
: V‘EN

3 =S
| = ‘
vEN v EN v EN
T TR T

(FIGURE 2)

B. Computation Element

The computation element of the project was entirely
done using VHDL, there was no interfacing with external
devices. The architecture of this element can be seen below.

Binary to
BCD

(FIGURE 3)

Each of the two 8 bit outputs from the keyboard element
of the circuit are received by their own BCD to Binary
conversion module. The 8 bits of data are assumed to be in
BCD format and the resulting signal from this component
would be inaccurate otherwise. The architecture of this
component can be seen below.

WILL NEVER BE A
CARRY OUT!

(FIGURE 4)

This module was not given to the group and needed to be
designed. The easiest way to do this conversion was to split
the 8 bit BCD signal into its two separate 4 bit digits, and
then treated as if it was a decimal number of sort. The 4 bits
that represents the tens place in a decimal number is
multiplied by a constant value of 10 (“1010” in binary),



which results in an 8 bit binary number. This number is then
added to the 4 bits (8 bits once alignment zeros are added)
that represent the ones column. The output from the
following adder will be binary representation of the original
BCD number. The adder does not require the carry out bit.
Due to the parameters of the arithmetic done in this
component, no overflow will ever occur. Once both BCD
inputs are converted, they are added together using a basic
adder. The sum from this adder will require 9 bits because
overflow is possible at this point in the circuit. This 9 bit
value is the result of the desired calculation of the project,
but needs to be converted back into the original BCD format
so that it can be easily displayed. Using components
provided by Professor Llamocca this was completed [2].
Professor Llamocca’s binary to BCD converter uses an
algorithm known as the “double dabble”, and was modified
to work with a 9 bit input as the original was set to work
with 8. The conversion component notably requires a clock
and start signal, and outputs a done signal. These will be
used with the FSM to control the circuit. The resulting
signal from the conversion is a 12 bit BCD value. 12 bits in
BCD represents a 3 digit decimal value, which is what is
required to represent a 9 bit binary value.

E. Display Element

This element of the circuit consists of a few hex to seven
segment decoders, a few processes, and signal manipulation.
A simplified layout of how this element works can be seen
below.

Binary to
BCD

Anode
Process

Hax ta Hax to Hex to
7 Seg 7 5eg 7 Seg

Decoder Dacodér Decade

7 Segment Displays

(FIGURE 5)

The 12 bit number from the binary to BCD converter is
first split into three 4 bit signals. Each of the 4 bit signals
represents the three digits of a decimal number (hundreds,
tens, and ones). Each one of these is sent through a hex to
seven segment decoder. This decoder takes a hex value and
converts it into a value that is useful with the seven segment
display. BCD digits in this case are interchangeable with
hex.

Displaying the a multiple digit number is a little bit
tricky on the FPGA because each separate display cannot
show separate values simultaneously. This is resolved by
rapidly cycling through each display and changing the value
to be displayed each cycle. The process used to accomplish
this is shown below.

displays: process (display counter)

n

if displayPOWER = '0' then
display <= "11111000"; sevenssg <= "1111110";
else

case display counter is

when "000" =» display <= "11111011"; sevenseg <= seven(20 downto 14);
when "001" =» display <= "11111101"; sevenseq <= seven(13 downto 7);
when "010" => display <= "11111110"; sevenssg <= ssven(é d

"011" => display <= "11101111"; sevenseg <= kbInputs(f d
"100" => display <= "11011111";

venseg <= kbInputs(13

when "101" = display <= "10111111"; sevenseg <= kbInputs (20
when "110" => display <= "01111111"; sevenseg <=
others => display <= "11111111"; sevenseg <= "1111111";

end case;

(FIGURE 6)

A counter was used to count from 0 to 6, one for each of
the 7 displays used. Count 0-3 accounts for the 3 digits of
the BCD result from the circuit. The other 4 cases will be
discussed later in this report. A second counter was used as
a clock divider for the counter used in the process above.
The clock of said counter runs at the 100 MHz rate of the
FPGA and counts from 0 to 250,000. Every time the counter
reaches 250,000, it outputs a ‘1’ for one clock cycle. This
signal is used as the clock for the counter used in the display
process. This was done because the rate of 100 MHz is far
too fast of a cycle speed to view the seven segment displays.
Then in each case of the process, the signals “display” and
“sevenseg” are used. The display signal controls which
display will be powered on each cycle. The sevenseg signal
controls what that particular display will show each cycle.
The values of sevenseg are mapped to the three 7 bit outputs
from the hex to seven segment decoders, and were
combined into one signal “seven” for organization.

F FSM
A FSM was used to control the time at which each
portion of the circuit would function. Three main states



were used. S1 occurs during the time in which keyboard
inputs are being accepted by the circuit. S2 is the time in
which calculations are being done by the circuit. This
happens extremely quickly and does not require user input.
S3 is the time at which the results of computation are
completed and are shown on the displays. The transitions
and outputs of the FSM can be seen below.

resetn =0

EnableRegister <= 1
counterReset <= 1
SegmentOn <=0
startAlg <=0

EnableRegister <= 0
counterResel <= 0
SegmentOn <=0
startAlg <= 1

Binary
to BCD
Dane

l1
EnableRegister <=0
counterReset <=0

SegmentCn <= 1
startalg == 1

(FIGURE 7)

While in S1, the registers are enabled to accept the BCD
values that result from keyboard input. Two signals called
“SegmentOn” and “startAlg” are set to ‘0’. SegmentOn
controls whether the seven segment displays are powered
on. startAlg is mapped to the start signal in the algorithm
used for converting binary to BCD. Once the counter used
to determine how many keyboard inputs have been entered
by the user reaches a value of 4, the FSM enters S2. In S2
the registers are disabled so that further keyboard inputs will
not impact the calculations. The start signal for the binary to
BCD conversion is sent, and the displays remain off. Once
the algorithm is completed, a done signal is sent from the
FSM used in the algorithm back to this FSM which lets the
circuit know that calculations are done. This puts the FSM
in S3, where SegmentOn is now ‘1’ and mapped to
displayPower seen in FIGURE 4. The displays will remain
on until the reset button is pressed on the FPGA. This will
clear the counter and return the FSM to S1.

I1I1. EXPERIMENTAL SETUP

In order to confirm the correct functioning of the project,
the circuit was separated into two large components to be

tested. The portion of the circuit which included the
keyboard and registers was created separately and tested
using simulations, and then using a keyboard and seven
segment displays to confirm values were being input
correctly. The other portion of the circuit including the
calculations and displayed results was tested using
simulations, and then tested using switches on the FPGA
and the seven segment displays. Once both portions were
confirmed to be working properly they were connected in
VHDL in one overarching top file. This final circuit was
tested again using both simulations in Vivado, and then
using a keyboard and the displays.

IV. RESULTS

For the most part, the circuit behaved in a way that was
expected and desired. Getting the keyboard portion of the
circuit to work in simulation proved more difficult than on
the FPGA. The calculation portion of the circuit worked as
expected right away. This could be due to the group
spending a large amount of time conceptualizing the circuit
before coding. The circuit was not completely without
glitches though. Originally, the counter would not reset
when the FSM went from S3 back to S1, or when the reset
button was pressed before calculations were completed. For
example, if 2 numbers were entered by the keyboard and
then the circuit was reset, the counter would remain at 2.
This meant that the next time keys were pressed, the values
would be entered into the third and fourth registers
immediately, and then the FSM would enter S2 before the
first two registers had values. Another issue that occured is
when the user accidentally pressed a key that was not a
number 0-9. The keyboard decoder still assigns a value to
the key given by the “others” case. A value would still
display on the displays as a result, but the value would not
make sense in context. This is why there are 7 cases in the
display process. The final four cases are used to display the
original 4 key presses that were used in calculations. Any
key press that was represented by the “others” value in the
decoder was set to be shown as the letter E. This was to let
the user known there was an Error in the inputs and to
disregard the result. Some other minor tweaking was done
to the FSM to create a smoother experience while using the
circuit, but overall the results were expected due to the
extensive testing of each component during the project
process.

CONCLUSIONS

In conclusion, the group has gained useful knowledge
regarding VHDL, computer logic, and teamwork. Creating a
project requires greater problem solving and debugging
skills compared to replicating a pre-designed circuit from
laboratory. Many concepts ranging from keyboard
interfacing to computer arithmetic were learned and this
knowledge will be useful in future endeavors. The project



results were better than originally expected, but there were
still a few things that could be added to the project later on
to improve quality of use.

REFERENCES

[1] https://reference.digilentinc.com/reference/programmab
le-logic/nexys-a7/reference-manual
[2] Llamocca, Daniel. “VHDL Coding for FPGA’s.”

Reconfigureable Computing Research Laboratory. N.p.,
n.d. Web. 5 Apr 2019.



