
Basic Calculator/ALU

Austin Barber, Ahmed Saudi, Chris Mooradian, Nadeen Dakermange
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

ajbarber@oakland.edu, ahmedsaudi@oakland.edu, chmoorad@oakland.edu, dakermange@oakland.edu

Abstract​— ​The goal of this project was to design a simple
calculator (Basic ALU) using an FPGA. An Arduino and a 4x4
keypad receives inputs from the user and feed those values for
processing to the FPGA. The calculator can perform addition,
subtraction, multiplication, or division, and the outputs are
displayed on a custom 7-segment display.

INTRODUCTION

The goal of this project was to create a basic calculator
(ALU) capable of handling parallel operations such as
addition, subtraction, multiplication, and division of two
2-digit operands. Inputs would be provided by the user
through a 4x4 matrix keypad, and a 4-digit output would be
displayed on a custom 7-Segment display. Design of the
ALU required application of several concepts used in class,
namely: combinational (addition, subtraction,
multiplication) and synchronous (division) arithmetic
circuits, coordination of synchronous and combinational
circuits using counters and enables, and multiplexing data
bus signals.

In a broader sense, the intention was to design the
beginnings of a basic microprocessor. With the addition of a
small number of registers and control lines, an ALU readily
becomes a useful, if not a basic, programmable device. The
VDHL developed for this project will be used for that
purpose.

In order to develop a high performance ALU, the
project will be divided into two parts. The Arduino is used
for handling the input data while we use the FPGA for
processing. The capability of the FPGA is to perform
parallel operations which increase the overall performance
of the ALU.

METHODOLOGY

A. Arduino Programming
The first step was to program an Arduino board to read

inputs from the keypad and convert them into usable
data for a Basys 3 FPGA. The group initially planned to

use an Arduino UNO board, but discovered that the
larger and more capable Arduino MEGA would be
needed to handle the 8 inputs from the keypad and 19
outputs to the FPGA. The Arduino code was written to
capture input from the keypad and convert it to a number
in BCD or a 2-bit operator signal, which would then be
output to the pins of the microcontroller. Digital pins
from the Arduino board output 5V and the Basys-3
FPGA allows for input voltages up to 3.3V, as such a
logic converter was implemented to prevent damaging
the FPGA.

B. VHDL programming
After wiring and programming the Arduino to handle the
keypad inputs and activate the appropriate FPGA
switches, we needed to implement VHDL code to handle
all of the ALU’s logic and output a result to a custom
made LED 7-segment display. The Arduino MEGA
outputs 4 sets of 4 bit BCD, one set for each operand.
The VHDL code then concatenates the first 2 sets into
one 8 bit binary number, which serves as the first
operand, then the second 2 sets into what will become
the second operand. The group then implemented a
multiplexer that will take the 2 bit operator and send an
enable signal to the proper logic unit in the ALU. The
addition and subtraction unit is a circuit of 5 full adders
used differently to achieve their respective mathematical
operation, and the division circuit uses a combination of
registers, full adders, and state machines to divide two
sets of 2 digit numbers. The appropriate result, selected
by the operator, is held in a register until the division
circuit is done, and the division FSM outputs a done
signal, which prevents the signal from going to the
binary to BCD convertor before the division is done, as
division takes more steps than any other operator. The
outputs of the mentioned Binary to BCD converter,
along with the original calculator inputs and the
operator, go into a 9 input multiplexor, which
multiplexes through what is to be displayed on the
7-segment displays using the outputs of a modulo-5

counter. Figure 5 provides a look at the VHDL logic
implemented in this project. Table 1 shows the resource
utilization of the proposed design.

Name Slice

LUTs
Slice
Registers

Bonded
IOB

Block
RAM
Tile

Utilization 39 31 19 0
Table 1. Resource Utilization of the Design

Fig 1. Block Diagram

C. Wiring and Implementation
A crucial step that was taken to ensure the full

functionality of the calculator was the necessary wiring of
the Arduino Mega, Basys 3 Board, and custom 7-segment
display. In wiring the Arduino Mega, PWM pins were
assigned for all inputs of the 4x4 matrix keypad. In addition
to the keypad, BCD output pins for both operands and
operator were connected from the Arduino, to logic
converters on a breadboard, and then to input pins on the
Basys 3 Board. After the data from the Arduino has been
interpreted by the FPGA for a given operation, the inputs
and outputs for said operation will need to be displayed on
the custom 7-segment display.

The custom 7-segment display contains five 7-segments
in full, where each 7-segment has its own common ground.
In order to display individual numbers on each 7-segment
display, a clock signal from the FPGA will cycle through
each ground line, activating them one at a time by
completing their circuit. To do this, the base of an NPN BJT
for each ground line will be connected to an output pin from
the FPGA, where when it outputs a ‘1’, the transistor is
activated and thus completes a path to ground for a given
7-segment display. In addition to these outputs from the
FPGA, outputs for each individual segment of each

7-segment display will also need to be connected. Each
segment of every 7-segment display contains 2 LEDs
connected in parallel, as well as a current limiting resistor.
After all of these connections have been made, the code will
then be responsible for fulfilling the intended functionality
of a basic calculator, or ALU.

Fig 2. Logical view of implemented design

EXPERIMENTAL SETUP

To verify that the Arduino Mega was correctly
producing BCD values, each output pin was connected to a
single LED on a breadboard. Data was input using the
keypad, and BCD data was visually confirmed. Next, the
Arduino outputs were wired to a 5V to 3V logic converter,
and a multimeter was used to ensure that logic highs were
being stepped down to approximately 3.3V. Fig 4 shows the
experimental setup of the project

Initially, Vivado’s behavioral simulation tool was used
to verify that the ALU was functioning properly. Next, the
program was implemented on a Basys3 board, and the
on-board switches and 7-segment display were used in place
of the keypad and custom LED display. Once proper
operation was confirmed, the Arduino Mega was connected
to the P-mod pins of the Basys3 and the outputs were wired
to the custom 7-segment display.

RESULTS

The calculator performed arithmetic as expected, and the
custom LED board displayed the inputs and outputs
correctly (see video linked below) :

https://www.youtube.com/watch?v=GyH208-_Zk4&feature
=youtu.be
The ALU calculates both the quotient and remainder for the
division operation, however only the quotient is displayed.

https://www.youtube.com/watch?v=GyH208-_Zk4&feature=youtu.be
https://www.youtube.com/watch?v=GyH208-_Zk4&feature=youtu.be

Fig 4: Real Hardware implementation

CONCLUSIONS

Simple arithmetic such as addition, subtraction,
multiplication, or division are a given in modern day
computers, and technology has evolved to be able to run
these operations millions of times a second. Developing our
own calculator has not only strengthened our understanding
of VHDL and microprocessors, but has also given the group
a broader appreciation for modern technology and its
intricacies.

Fig 5: VHDL Logic Chart

References:

Binary to BCD circuit was taken from Dr. Llamocca’s website:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

