

Maze Runner

Jonatan Cogiel, Gabe Espinosa, Joni Llana, Roman Kulikovskiy

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

emails: jonatancogiel@oakland.edu, jonillana@oakland.edu, gabrielespinosa@oakland.edu,

rkulikovskiy@oakland.edu

Abstract - The maze runner implements the

FPGA to create an interactable and enjoyable

game for users to play. Its purpose is to help

show off the potential of VHDL and its

interface; in conclusion the language is a

useful tool for programmable design and

integrated circuits.

Introduction

Our group consisted of casual gamers.

During our meeting to decide our project,

we brought up the idea of possibly creating

a game and decide to advance with that

idea. The game we decided to create is a

maze runner game. The goal of the game is

complete the maze without touching any of

the walls before the timer runs out. To

implement the game, we needed to have a

good understanding of how VGA works with

VHDL. The VHDL portion consisted of

multiple files that included drawing different

stages of the games, the player, the timer,

and the winning and losing conditions. After

that feature of the coding was finished, the

next step was to determine the functions of

each part. For instance, the players

movements and the walls conditions. To

determine if the code worked, we used a

monitor with a VGA connector to test the

code. We got a functional game to work and

all that was left was to debug and optimize

the game.

Methodology

VGA Display

The project was allocated to two

major portions; coding the VGA onto a

monitor to display the game and coding the

functions of each element of the game.

The front porch is an interval period

between the end of picture information and

start of horizontal pulse. The level of front

porch is a high and the purpose is to clear

any signal level that remains before the

horizontal pulse occurs; the duration of the

front porch is very short.

The back porch is the duration between end

of horizontal pulse and start of the next line

with video information. The back porch lasts

more than front porch and the main purpose

is to give the time to beam scanning for

reverse direction (right to left) to start new

line.

Due to the concept being new and having

no prior experience; writing the code for the

initial maze map was the most problematic

aspect of the VGA portion. By creating an

array that was named bitMap and making x

and y values 32 bits each, the map was

created to display a grid of a 32x32 matrix

maze. To be able to convert the pixels into a

32x32 matrix, division was required. The

scaling of the map itself had a vertical

integer value of 1024 pixels and a horizontal

integer value 1280 pixels. To make the

scaling 32x32, both integer values were

divide by 32. To make further additions or

levels to the game, the same theory can be

applied to draw different mazes. The VHDL

code stays consistent except for the bitMap

for the VGA portion of the project.

Figure 1: Level 1 Bitmap

Figure 2: Level 2 Bitmap

Figure 3: Level 3 Bitmap

 Aside from the mapping, a clock will

be set to time the user in completing the

game; depending on completion of the

game, a win or lose condition will appear on

the screen. As for the player themselves, it

takes up 4 squares in the matrix. There is

an initial value set up at the top left corner of

the map.

RGB lighting was implemented during the

process of the game to create a vibrant

display. The maze, player, and titles all

have specific colors given to show diversity

between each component. RGB color

coding constructs different combinations of

red, green, and blue using 12 bits. For

example, the color code below displays the

color red.

Figure 4: The code above represents an

example of RGB color coding.

Functionality

The game consists of three different

levels that were each drawn using a bitmap

of a 32x32 matrix shown in Figures 1

through 3. For levels 1 and 2 we

implemented two different game physics

into the game. In level 1, the player uses the

buttons as inputs to accelerate and

decelerate the controlled object; while level

2’s game physics consist of moving a block

per button click. Level 3 consists of a

different map but the same functionality as

level 1.

Level switches occur when the

states change in the finite state machine

(FSM). The FSM not only changes levels

but it also determines the surroundings of

the game and the conditions. These include

the open spaces, walls, and the win zone

that will direct you to the next level which in

turn will lead to the next state. Open spaces

are indicated by 0’s on the bitmap figures,

walls are indicated by 1’s, and the win

zones are 2’s. In our case, when any part of

the controlled objects hits a 1 (wall) on the

map, they get sent back to starting position.

The other conditions of the game involve

the loss and win result. The player needs to

complete all three levels of the game to win,

while on the other hand they simply need to

let the timer run out to lose. Once these

conditions are met, a green or red image

appears depending on the result of the

game.

Some improvements that could be

made include more game physics such as a

jumping mechanic, adding images to the

player figures, and creating more levels for

a more competitive aspect.

Experimental Setup

When testing the code, the first step was to

make sure the monitor can receive and

transmit the data coming from the FPGA.

Once the code was completed, a test was

ran proving the functionality of drawing

images on VHDL and displaying them onto

the monitor. Next, the game logic was

implemented onto the monitor, and to make

sure the controller inputs functioned

properly.

Results

The results that were obtained in this project

were from a visual and an I/O

correspondence. When testing the maze

game, the player would play through the

different levels, in which case they all had

different pathways as well as movement for

the player themselves. What this did in turn

was allow different forms of implementation

to be accessed for the player, and it showed

how different forms of “physics” could be

applied to the movement of the player.

 The portion from class that this

project related to was from unit 7, where the

usability of the VGA connector was

discussed.

Appendix

http://ece-research.unm.edu/jimp/vhdl_fpgas/slides/VGA.pdf

