
Interfacing FPGA with
PixyCAM via UART Protocol

(Universal Asynchronous Receive Transmit)

Kristof von Czarnowski, Matthew Wener, Luke Pridemore, Randy Wittorp

Pixy CAM
What the sensor
sees.

Sensor is calibrated
to seek color codes.

What the sensor sends via
UART

Algorithm puts a
map around the
object. Calculated
center point (x,y) and
the dimensions.

PixyXFPGA

PROJECT STATEMENT
Goals of Project:

➢ Interface PixyCAM with FPGA

○ Parse a UART Signal

■ Gather all 16-bit words from
protocol

○ Store information in registers.

○ Convert the information to base 2.

○ Display live information on 7-seg display

■ Display information (X, Y, W, or H)
chosen using on-board switches.

■ Indicate the variable that is being
displayed with an RGB LED.

PixyXFPGA

Motivation:

1. To learn more about asynchronous serial
communication.

2. An interesting and useful application-
based project using a unique sensor.

3. Team member was acquainted with
sensors capabilities and calibration.

Applications:

1. Tracking objects
2. Projectile motion estimations
3. Obstacle avoidance

Application example: an autonomous rover
that retrieves an object and returns it to a
designated drop-off location. (2800 Project of
team member).

EXPERIMENTAL SETUP

The PixyCAM is calibrated with the

accompanying software PixyMON, where a

signature can be declared through the viewport

of the camera, the sensor is then further

calibrated (white-balance, exposure, etc.)

Because the PixyCAM requires a minimum of a

5V power supply and the FPGA only has 3.3V

rails, an Arduino is used to serve as the power

supply. The PixyCAM TX pin was connected to

the JD1 header of the FPGA, which serves as the

RX on the UART.

PixyXFPGA

PixyCAM

5V rail

X-position X is

selected

RX header

Tracked object

Connected to 5V

power supply

7F = 127

Range = [0,212760]

Center = 130

Note that the ball is slightly

offset from the center (130).

TOP LEVEL DIAGRAM
PixyXFPGA

The VHDL program parses the RX signal’s bits via the

component RX_UART. The data is then re-compiled

into bytes by the bitstream-parser. The genpulse acts

as a bit counter (@ 19200 baud).

The bitstream-parser enables 8-bit registers (zA => zL)

which hold the compiled bytes.

Once the registers have received their data, a ‘done’

signal is sent from the bitstream-parser to enable the

array 16-bit registers, which combine the bytes held in

the 8-bit registers into 16-bit words.

Switches determine which value is displayed on the 7-

seg display; the onboard RGB LEDs displays a color to

indicate which value is being shown (yellow->x, blue->y,

magenta->w, green->h)

Finite State Machine Diagram

The FSM is to activate enable signals for registers to
store the data from the UART RX to their
corresponding signals as they are transferred in.

RX_UART COMPONENT PixyXFPGA

Data Stream:
The data coming from the PixyCAM uses the
UART protocol. In order to use the PixyCAM
object tracking the signal needs to be translated
into a usable form.

Baud Rate and Sample Rate
The baud rate is set on the PixyCAM (in this case,
it is 19200 bits per second). To oversample the
signal a frequency of 16 times the baud rate (307
KHz) must be used in a counter.

Example of a UART data stream

Sampling:
Interpreting the UART signal can be done by
oversampling the signal in a FSM. To do this a
start signal needs to be generated at 16 times the
baud rate. A counter is incremented, starting
from zero, every time the start signal is high until
it reaches 7 (the center of the start bit). The
counter is cleared and the state is moved to data
collection mode. Now that center has been
detected the start signal is watched 16 times to
reach the center of the first data bit. The value is
stored and the process repeats for the number of
data bits in the given signal (in this case 8 bits).
Once data collection is complete the stored data
is assigned to an output and waits 16 ticks so that
it is in the stop bit to wait for new data.

TESTBENCH
PixyXFPGA

