
Banner on Seven Segment Displays

With Varying Speed and Scrolling Messages

Arsha Ali, Drew Correll, Nina Luong, Bruce McCallister

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: arshaali@oakland.edu, drewcorrell@oakland.edu, nluong@oakland.edu, bamccallister@oakland.edu

Abstract—the purpose of this project is to design and

implement finite state machines with a datapath circuit that

will primarily interface with all eight seven segment displays

on the Nexys 4 DDR board. With the use of switches, the

banner on the display will move in a forward or backward

direction, or display one of two scrolling messages. Switches

will also be used in order to choose one of four speeds at which

the banner flows. Furthermore, the user can active the stop

switch to freeze the current pattern across the seven segment

displays. The major findings are that the banner on the seven

segment displays is accomplished with the use of several

hardware components controlled by finite state machines,

including four speed counters, multiplexers, 7-bit registers, 56-

bit parallel access shift registers, and a serializer consisting of

another finite state machine, a decoder, and a multiplexer. The

conclusions clearly indicate that a datapath circuit controlled

by finite state machines is a powerful method in the design of

digital systems. Recommendations to the user include thorough

testing of all switches controlling speed and the banner pattern

or message selection.

I. INTRODUCTION

This report will outline the methodology, experimental

setup, results, and conclusions from the undertaking of this

project.

The motivation to create banners and messages on the

seven segment displays stems from the desire to showcase

the visual side of hardware. With visual effects, the

audience can clearly see the outcome and proper functioning

of the hardware components. By setting switches, the user

can cause a forward snake banner pattern, a backward snake

banner pattern, the scrolling message “HELLO”, or the

scrolling message “ECE2700” to appear on the seven

segment displays. For each pattern, the user will be able to

use another set of switches to control one of four different

speeds that the banner moves at. A last switch is used to

stop the banner pattern. The purpose of this project is

achieved with the use of the software Xilinx Vivado written

in VHDL.

Topics discussed in class that are present in this project

include the functionalities of several hardware components

and their implementation in VHDL, such as N-bit registers,

N-bit parallel access shift registers, multiplexers, and finite

state machines. These components, along with counters, a

serializer, and basic logic gates, make up the datapath

circuit. The datapath circuit is effectively controlled by a

finite state machine for each pattern, as well as a fifth finite

state machine for the serializer output.

A topic not directly covered in class, but vital to the

project, included the implementation of the serializer.

Another topic that is vital to the project was the

implementation of counters with different maximum counts

that correspond to time delays used as speeds for the banner.

With the design of proper state diagrams and the entire

circuit, the desired results are achieved with precision and

accuracy.

The applications of the project include soothing visual

displays and communication. With the use of switches, the

user is able to select the speed of each of the four

patterns/messages to their desire. The user can also stop any

pattern to freeze it on the seven segment displays by

activating the stop switch.

.

II. METHODOLOGY

 An architectural structure of how all of the individual

components should be laid out was based off of an example

in Unit 7 from ECE 2700 class [1]. After structurally

organizing each component, an architectural diagram was

created in order to limit the amount of complications which

could arise.

A. Counters

Four different counters were created to allow the user to

choose one of four speeds that a pattern could progress at.

The inputs to the counters include a 100MHz clock from the

Nexys, enable, resetn, and sclr. The enable bit was set to ‘1’

and the sclr bit was set to ‘0’ for all four counters in the top

file. The 100MHz clock is produced by the Nexys. The

resetn bit will reset the counters, which is controlled by the

CPU_RESET push button on the Nexys. The outputs of

each counter include the count Q and a bit z. The number of

bits of Q depends on the maximum count that the counter

can obtain. The bit z is set to 1 when the maximum count

has been reached.

Since the Nexys has a 100MHz clock, this equals a

period of 10ns. Equation 1 shown below was used to

calculate the maximum count for a desired speed. S

represents the desired speed, T represents the period of the

100MHz clock, and N represents the value of the counter

that is to be obtained. The units of S and T are in seconds.

Equation 1:

𝑁 = 𝑆/𝑇 = 𝑆/10 ∗ 10−9

The four counters created correspond to speeds of 1.5

seconds, 1.0 second, 0.5 seconds, and 0.25 seconds. The N

value for each is 75 ∗ 106, 50 ∗ 106, 25 ∗ 106, and 125 ∗
105 respectively.

 The output Q is not relevant for the purpose of this

project. The output z from each of the four counters is

inputted to a multiplexer, where the speed that passes is

selected by the speed switches set by the user. This signal is

then used as the enable input for all four pattern finite state

machines.

B. Forward Pattern Finite State Machine

 The inputs to the forward pattern finite state machine

include resetn, enable, and the 100MHz clock. The enable

of this finite state machine is the output z bit chosen by the

user from the counters. This finite state machine controls the

enable, sclr, and data for eight 7-bit registers. The enable

and sclr directly connect to each register. The output from

the finite state machine is actually a 2-bit selector that

controls the output of a multiplexer, which is then sent as

the data input to all of the registers.

 The finite state machine consists of 24 states. Three

consecutive states will continue to output the same 8 bits for

sclr. The 8 bits are broken down into eight 1-bit sclr, which

is then sent to each of the eight registers. During these three

consecutive states, the output of the multiplexer will change.

 By setting the sclr bit and enable bit for all registers equal

to 1 except for one register, the output of all registers is

cleared while the one activated register cycles through three

different data inputs. The 7-bit data inputs correspond to the

LED pattern for each anode before moving to the next

anode. The finite state machine progresses by checking the

enable input. When the input is 1, the next state happens.

Otherwise, the current state remains. When the last LED

pattern has been reached on the last anode, the finite state

machine returns to the beginning and repeats.

C. Backward Pattern Finite State Machine

The finite state machine for the backward pattern

employs the same logic as that of the finite state machine for

the forward pattern. The true value behind these finite state

machines is the ability to clear the output of all registers

except for one register by manipulating the enable and sclr

bits of the registers.

The difference in the finite state machine for the

backward pattern is the sclr output bits. Since the pattern is

desired to start at the last anode and move to the first, the

sclr bits are set backwards compared to the forward finite

state machine. This allows the last register, corresponding to

the last anode, the capture three different LED patterns

before moving to the next anode to the left.

D. LEDs Pattern Multiplexer

 There are three different LED patterns that will appear on

each anode before moving to the next anode. The 7 bits for

each of the three patterns are predetermined and are the

inputs to the LEDs pattern multiplexer. The pattern of the

LEDs that is outputted is controlled by the output value of

the selector from the finite state machine. This 7-bit pattern

for the LEDs are then sent to the data input for all eight 7-bit

registers for the forward pattern.

 A different multiplexer is used for the backwards pattern,

with three different LED patterns. The output of this

multiplexer is also sent to all eight of the 7-bit registers for

the backwards pattern.

E. 7-bit Registers

 For each of the forward and backward patterns, the finite

state machines control eight 7-bit registers each. The inputs

are resetn, data, enable, sclr, and the 100MHz clock. Since

the output of the finite state machines only let the sclr value

of one register to be set to 0, that is the only register where

the output is changing according to the LEDs pattern

multiplexer.

 With the passing of three states, the next register’s sclr

value will be set to 0, and the three LEDs pattern will then

be outputted from that register.

 The 7-bit output from all eight registers are concatenated

together to form a string of 56 bits. These 56 bits from the

forward registers and the backwards registers are the input

to the pattern selector multiplexer.

 Physically, each register corresponds to one anode of the

seven segment displays. This method allows for one anode

to be activated at a time and cycle through three different

LED patterns before moving to the next anode.

F. “HELLO” Finite State Machine

 The inputs to the finite state machine are enable from the

output of the chosen counter, the 100MHz clock, and resetn.

The outputs are s_l and enable for the parallel access shift

register.

 The state diagram consists only of two states. In state 1,

the enable to the shift register and s_l are both set to 1.

After, the diagram moves immediately to state 2, where it

will remain for the remainder of time. In state 2, when the

enable to the finite state machine is 0, the output enable and

s_l to the shift register is implied. When the enable is 1, the

enable to the shift register is set to 1 and s_l is set to 0.

G. “ECE2700” Finite State Machine

 This finite state machine is identical to the “HELLO”

finite state machine. The inputs, outputs, state transitions,

and outputs are all the same. The outputs however go to a

different 56-bit parallel access shift register.

H. 56-bit Parallel Access Shift Registers

 The inputs are resetn, 56 bits of data, s_l, enable, din, and

the 100MHz clock. The output is 56 bits for Q. The 56 bits

of data correspond to the 7 bits for the LEDs for all eight

anodes. The messages of “HELLO” and “ECE2700” are

predetermined in this way, where the LED bits for anodes

not in use are all set to 1.

 During the first state in the finite state machine, the s_l bit

is set to 1, which loads these 56 bits. Afterward, the 56 bits

only shift to the right by setting s_l to 0. The shifting is done

7 bits at a time, so that the LED pattern on each anode is

moved to the right. The 7 least significant bits are the value

of din, which get set to the 7 most significant bits. These 56

bits are then sent to the pattern selector multiplexer. By

doing this, the “HELLO” and “ECE2700” messages scroll

across the seven segment displays. When the messages

reach the last seven segment display, they wrap around back

to the first seven segment display.

I. Pattern Selector Multiplexer

 The 56 bits from each of the four pattern finite state

machines are the input to this multiplexer. The output is

what will eventually reach the seven segment displays. The

select line of this multiplexer is controlled by switches

chosen by the user on the Nexys. When the select is “00,”

the forward pattern will be outputted. When the select is

“01,” “10,”, or “11,” the backward pattern, “HELLO”

message, or “ECE2700” message will be the output

respectively.

J. Serializer

 The serializer circuit consists of a multiplexer and decoder

controlled by the serializer finite state machine. The output

z from a 1ms counter is used as the input enable to the finite

state machine. The finite state machine also has the input of

the 100MHz clock and resetn. The only output of this finite

state machine is three bits that are the select of the

multiplexer and the input to the 3-to-8 decoder.

 The finite state machine consists of eight states. With

resetn set to 0, the state is state 1. With the output z from the

1ms counter being 1, the next state is one greater than the

current state. When the counter output z is 0, the current

state remains. In each state, the three bits that are outputted

are increased by a value of 1. For example, in state 1 the

output is “000,” in state 2 the output is “001,” in state 3 the

output is “010,” and so on.

 The 56 bits that were outputted from the pattern selector

multiplexer are broken down into eight grouping of 7-bits.

Each 7-bits corresponds to the LEDs on each anode. The

output of this multiplexer is the 7-bit pattern of the LEDs

that appear on the anode enabled by the decoder.

 The decoder takes the 3 bit input and decodes it to activate

one anode. The 8 bit output from the decoder are sent to a

NOT gate before being mapped to the physical anodes.

 By cycling through each anode and the corresponding

pattern of LEDs for that anode, each of the four patterns

work flawlessly.

K. Stop Switch Bit

 The stop bit is controlled by a switch on the Nexys. When

the switch is set to 1, the pattern across the seven segment

displays freezes. This is done by sending the input of this

switch to a NOT gate. The output of this NOT gate and the

output from the speed multiplexer are sent to an AND gate.

This result is then sent to the enable inputs of all four

pattern finite state machines.

 When the stop switch is set to 1, the result of the AND

gate is a 0. Thus, the pattern finite state machines are not

enabled. If this is the case, the outputs of the finite state

machines remain in the current state they are in. Thus, the

pattern across the seven segment display stops moving.

 When the stop switch is not activated, the patterns will

move across the seven segment displays as the finite state

machines progress into different states.

L. VHDL Code

The figures at the end of the report show sample codes

of the finite state machines. The code for each finite state

machine outlines the Transitions process of moving from

one state to the next, as well an Outputs process that will

eventually set the LEDs for each anode across the seven

segment displays.

The counters were coded in VHDL by using sample

code from Unit 7 VHDL [2]. The number of bits for Q was

created using the math_real.log2 and math_real.ceil

libraries.

As seen from the Figure 1 showing the Transitions

process of the forward finite state machine, when resetn

equals 0, the finite state machine is in state 1. All other

transitions happen only on the rising edge of the input clock

and based on the enable input. To move to state 2 from state

1, the enable to the finite state machine must be 1, otherwise

it will remain at the current state. The enable bit is used to

progress each state up to state 24. After state 24, the process

returns back to state 1 and repeats. A similar Transitions

process is used to write the VHDL code for the backwards

finite state machine.

As seen from Figure 2 showing the Outputs process of

the forward finite state machine, the selector, sclr, and

enable to the register bits are set based on the state and the

value of enable to the finite state machine. The sample code

shows how the bits for the selector change, while the sclr

bits remain the same for three consecutive states.

As seen from Figure 3 showing the code for the

“HELLO” and “ECE2700” finite state machines, the initial

state is 1, and the state is 2 for the remainder of time. The

Outputs process shows how the s_l bit and enable to the

shift register is set when the enable to the finite state

machine is 1. This allows for an initial loading of the data,

and only shifting thereafter.

The VHDL code and components needed for the

serializer were determined by analyzing a sample code [3].

This sample code helped design the correct components for

the purposes of this project.

After the successful coding of each component, the top

file interconnects these components using signals. The use

of the port map and generic map functions are employed to

do this. Port map is used to connect all the components

together by creating the necessary signals. As seen by

Figure 4, generic map is used to set the maximum count of

the counters to create a specific speed.

III. EXPERIMENTAL SETUP

The setup which was used in order to verify the

functionality of the project was first to plan out as much step

by step detail as possible of the program. This was done in

order to limit the amount of errors which may occur. When

programming, it was crucial that the state machine

diagrams, the architecture of the project, and the logic was

followed exactly as planned.

Each of the four designs which are displayed on the

banner have their own finite state machine state diagram.

An extensive state diagram was first created for each finite

state machine to implement the pattern and flow of which

LEDs would be illuminated on their corresponding anodes.

Once the state diagrams were completed, an algorithmic

state machine was designed, which would be implemented

in each finite state machine.

The software Vivado 2017.4 was used during the

creation of the program. This software allows the use of

timing and functional simulations to verify the intended

functioning of the project. The simulations were analyzed

by creating a test bench of the top file. The test bench

consisted of sample cases to the input bits, and the output

parameters were determined from the simulation. This also

allows to debug the code if the results are not as expected.

When the code initially did not produce the expected results,

the functional simulation was used to trace signals and

correctly identify the source of error. By following the

schematics as planned, it allowed for a successful program

and code.

With some further design and implementation, the

expected results include being able to use four different

switches to set four different speeds for the banners. Also,

another set of two switches will be used to choose one of

four outputs to the seven segment displays: forward banner,

backwards banner, “HELLO” message, or “ECE2700”

message. The results are discussed in greater detail in the

following section.

IV. RESULTS

By using Vivado Functional and Timing Simulations,

the results of the testbench were verified for accuracy. For

example, when the selector is “00” the simulation will show

one seven segment anode enabled, cycling through the three

states dependent on the pattern of LEDs were chosen by the

multiplexor controlled through the finite state machine.

Similarly, the results for the backward pattern when the

selector is “01” shows one seven segment anode enabled as

the LEDs cycle through three states. For both of these cases,

all bits of the LEDs on all the other anodes are set to 1, since

they are of type common anode. A sample functional

simulation showing the functioning of the forward pattern is

included in Figure 5.

When the selector set to “10” for the scrolling “HELLO”

message, the proper LEDs are enabled and the LED bits

shift to the next anode and repeat. This is achieved by

initially loading the data and only shifting 7 bits at a time

thereafter. Similarly, when the selector is “11” for the

scrolling “ECE2700” message, the LED bits shift to the next

anode and then repeat. A sample functional simulation

showing the shifting of 7 bits at a time for the “HELLO”

message is included in Figure 6.

The same pattern will repeat for each of the eight 7

segment displays until the selector is manipulated to

different bits.

When the stop switch is enabled, the pattern or message

currently on the seven segment display freezes. When the

stop bit is set back to 0, the pattern or messages continues

from where it was frozen.

In addition, the switches used to control the speed

propagation of the banner or scrolling messages is

accurately achieved. With the speed switches set to “00,”

the pattern moves at a speed of 1.5 seconds. When the speed

is set to “01,” the pattern progresses at 1.0 seconds. For the

cases of “10” and “11,” the pattern moves at 0.5 seconds

and 0.25 seconds respectively.

These results were achieved by correctly integrating

various hardware components learnt in class. For the

forward and backward snake patterns, the correct

positioning of the LEDs on only a single anode was

accomplished by enabling all the registers, and setting all

but one registers synchronous clear value to 1. By doing

this, the output of the registers corresponding to the anodes

not currently in use were turned off by sending all bits of

LEDs to 1.

For the “HELLO” and “ECE2700” scrolling messages,

the use of a 56-bit parallel access shift registers were

invaluable. At the beginning, the string of 56 bits

corresponding to the message plus bits of 1 for empty

anodes were loading to the shift register. After initial

loading, the bits only shift 7 at a time. The 7 bits

corresponding to the least significant bits are then sent as

the 7 data input bits to become the next 7 most significant

bits. By doing this, the messages are able to scroll or wrap

around the seven segment displays.

After several rounds of debugging and slight

modifications, the results were as expected. All results are

explainable and accounted for by the methodology

employed.

CONCLUSIONS

The main points that have been learned while doing this

project is that finite state machines are powerful and useful

hardware components used to control a datapath circuit.

With the proper logic and connection of hardware

components, desired results can be achieved and verified. It

was also learned that a significant amount of detail and

planning should go into the project before starting to code

and implement the design. The code was much more easily

written after the state diagrams and circuit were sketched.

With the completion of this project, no issues remain to be

resolved as the desired results were achieved. Further

development with this project could include a more fluid

snake pattern that appears to overlap between two anodes at

a time. In addition, the RGB LEDs that are readily available

on the Nexys 4 DDR board could be utilized to indicate the

current set speed or pattern. Of course, more speeds and

different banner patterns could also be created to add more

variety to the project.

REFERENCES

[1] Llamocca, Daniel. “Notes - Unit 7.” Introductions to Digital

Systems Design, Jan. 2018, pp. 12–13.,

moodle.oakland.edu/pluginfile.php/4385644/mod_resource/co

ntent/5/Notes%20-%20Unit%207.pdf.

[2] Llamocca, Daniel. “Unit 7: Digital System Design.” VHDL

Coding for FPGAs, slides 6-7.,

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPG

A/Unit%207.pdf

[3] Llamocca, Daniel. “Serializer: Four 7-segment displays.”

VHDL Projects (VHDL files, testbench),

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPG

A/ISE/Unit_7/serializer.vhd

Figure 1: Forward FSM Transitions Process.

Figure 3: “HELLO” FSM Transitions and Outputs Process.

Figure 2: Forward FSM Outputs Process.

Figure 4: Top File use of Port Map and Generic Map.

Figure 5: Forward Pattern Sample Functional Simulation.

Figure 6: “HELLO” Message Sample Functional Simulation.

