
Seven Segment Banner Display

Brian Conlon, Lucas Costello, George Habeb
Electrical and Computer Engineering Department School of Engineering and Computer Science

Oakland University, Rochester, MI
conlon@oakland.edu, georgehabeb@oakland.edu, lcostello@oakland.edu

Introduction
Our objective was to create a seven segment
banner display to be used within the
Oakland University Engineering Building.
We decided to go with an architecture based
application by demonstrating our design on
a Nexys A7 (100T) board. The board has a 7
segment display, switches, and everything
else needed to code and test our design. The
code consists of 16 source files within
Vivado (VHDL), which includes the top file.
For more information on specific parts
within this, please see the block diagram
listed on page 3 (Figure 3). Our motivation
for this project was that we knew as people
start their first semesters at Oakland, it can
be confusing to differentiate the buildings on
campus. We thought a seven segment banner
display not only helps the students, but
better shows what to expect from their
future classes. The main implications of our
project were based around the planning
process. The planning process includes
making a block diagram of how all of our
components would interact, which took
some time to work out. Within our Digital
Logic Design class at Oakland University,
we learned a lot about shift registers, mux,
finite state machines (FSM), decoders,
counters, and much more we applied to our
project. We learned on our own how to

apply these components together to this
specific application. Although this
application was made to be used at Oakland
University, it can be used anywhere.

Methodology
In our project, the Nexys A7-100T FPGA
board's seven-segment displays feature one
of two chosen messages scrolling from left
to right. Users can control functions like
variable scrolling speeds and pausing the
display. The message selection is controlled
by a 2-to-1 mux, directing the chosen
message to a parallel access shift register
with enable. The shift register plays a crucial
role in storing and shifting the characters of
our message, delivering them to an 8-to-1
mux. The finite state machine (FSM)
manages the 8-to-1 mux and the 3-to-8
decoder, ensuring the correct display is
enabled for the selected character. The FSM
operates on a 10ms counter, shifting the
selected character and display every tenth of
a second, creating the illusion of multiple
segments being on simultaneously. To
achieve variable speed settings and pause
functionality, we employ two individual
counters and two multiplexers, working
together to create the desired effects. All
synchronous circuits in our system share the
same clock and reset input, ensuring a
synchronized operation. Further details



about our components and their workings
can be found in the following sections.
A. multipleShiftReg :

The multipleShiftReg component is
designed to maintain the original values of
characters and shift them to the right.
Comprising 2-to-1 multiplexers and D
flip-flops, it remains simple while ensuring
efficient data manipulation. The enable
signal is sourced from another component
named displayControl. The resultant output
of the shifted message is then conveyed to
the 8-to-1 Mux. A more detailed view of the
multipleShiftReg component can be found
below (Figure 1).

B. 8-to-1 Mux
Taking the outputs from the

multipleShiftReg and the FSM, the 8-to-1
Mux outputs the selected character to the
Binary-to-Seven Segment Decoder.

C. displayControl :
The way we went about

implementing the variable speed and pause
options was to use two different counters
along with two muxes. As can be seen in the
block diagram (Figure 3), the enable switch
on the shift register was connected to the
output of this component.. For example, if
the “pause display” option was selected, the
mux would choose a zero instead of the
clock. This would pause the shift register,
and continue displaying what was currently
on the display. The other mux for the “speed
select” has a mux connected to two different
speed clocks, which the user can use a
switch to select between the two.

D. Finite State Machine
The finite state machine (FSM) was

instrumental in coordinating the selected
character from the 8-to-1 Mux with the
3-to-8 Decoder. To achieve a smooth
presentation of the message across all eight
displays, we serialized the FSM. This
involved syncing its enable with a 10ms
counter, allowing a systematic shift through
each character and display, revealing the
complete message. The FSM's output, a
"sel" value, is then directed to both the
8-to-1 Mux and the 3-to-8 Decoder. The
state diagram for the FSM can be seen
below (Figure 2).
E. Binary-to-Segment Decoder

In order to include every letter and
number along with a character for "space"
we had to use 6-bits to represent each
character. The way our Binary-to-Segment
Decoder works is by taking the input and
checking for the corresponding case. After it
finds the case it outputs the 7-segment
equivalent of the character.



Figure 1: multipleShiftReg Component

Figure 2: State Diagram

Experimental Setup

In this project, VHDL was used to describe
the circuit, and Xilinx Vivado 2021 played a
crucial role in software simulations. The
circuit's outputs were closely linked to the
7-segment display, following the constraints
file for the Nexys A7-100T board. The
subsequent synthesis and implementation
steps in Vivado resulted in a bit-stream for
programming the FPGA board, which then
underwent rigorous testing. The user
interface featured four switches: one for



selecting the banner message, another for
choosing variable speed (with two options),
a third for pausing the display, and the
fourth to show a static version of the
selected message. VHDL programming
within Vivado was essential for developing
the project's components, and the testing
process, including simulations and
adjustments, ensured the accuracy and
reliability of the implemented system.

Results

After refining the bitstream and conducting
thorough circuit debugging, our project
achieved successful functionality. Testing

involved utilizing the four assigned
switches: one for message selection, another
for scrolling speed adjustment, a third for
pausing, and a fourth for viewing a static
message version. The inclusion of a reset

button facilitated efficient message resetting.
These outcomes met our expectations and

aligned with fundamental concepts

discussed in class, particularly the constraint
of illuminating only one 7-segment display
at a time. Leveraging a serialized Finite
State Machine (FSM) and implementing
parallel access shift registers allowed us to
create the illusion of simultaneous activation
across all 8 displays and seamless message

shifting. Overall, our project not only
showcased effective implementation but also
incorporated essential theoretical concepts
into a functional and engaging display

system.

Conclusions

In conclusion, the seven-segment display
project proved to be successful, and the
learning experience was invaluable. Our
observations indicate potential
improvements, such as expanding the
project by incorporating additional
seven-segment displays. The current setup
accommodates phrases of up to 8 characters,
and enhancing it could involve integrating
more shift registers to increase the message
capacity

References [1] Llamocca, Daniel. "Digital System Design." Oakland University, Rochester, MI



Figure 3: Complete Circuit Diagram


