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Abstract—This project serves as a simple eight-bit signed 

calculator with four operations: addition, subtraction, 

multiplication, and division. The calculator takes its two inputs 

as two-digit hexadecimal numbers input via a Personal 

System/2 (PS/2) keyboard, as well as a switch input from the 

the Nexys A7-100T board, and outputs a signed four-digit 

hexadecimal answer on the four rightmost seven segment 

displays of the board. This was done using various digital logic 

components coded using Very High-Speed Integrated Circuit 

(VHSIC) Hardware Description Language (VHDL) in Vivado. 

Upon completion, an accurate and user-friendly signed 

hexadecimal calculator was created. 

I. INTRODUCTION 

This simple eight-bit calculator takes two two-digit 

signed numbers as hexadecimal inputs (A and B) from an 

external PS/2 keyboard. From this keyboard, a decoder, 

Finite State Machine (FSM), and series of four registers are 

used to feed user input into the various operations of the 

calculator. These basic arithmetic operations, including 

addition, subtraction, multiplication, and division, are 

determined via four switches on the Nexys board, linked to 

a four-to-one multiplexer to properly output an answer. The 

output from the multiplexer is then displayed on the Nexys 

board’s four rightmost seven-segment displays using a 

seven segment serializer. Figure 1 shows the block diagram 

of this schematic.  

 
Figure 1: Simple Signed Eight-Bit Calculator Block 

Diagram 

 

Calculators are vital instruments used for solving 

algebraic problems that would otherwise take much longer 

to solve by hand. Topics from class used in this project 

include basic logic gates, combinational and sequential 

circuits, FSMs, as well as number systems and computer 

arithmetic to confirm the calculator is giving appropriate 

results. 

II. METHODOLOGY 

A. PS/2 Keyboard Input 

In designing this calculator, it was decided to use a 
keyboard as the user interface to obtain the A and B values to 
perform calculations with. To do this, it was necessary to 
decode the data obtained from the keyboard/Nexys board 
interface. The PS/2 keyboard outputs a DOUT signal, as well 
as a done signal. The DOUT signal is a ten-bit output, with 
the two most significant bits (MSBs) being the stop bit and 
the parity bit, which can be ignored for the purpose of this 
project. The rest of the signal, DOUT (7 downto 0), is the 
data itself, corresponding to the scan code of each key on the 
keyboard, as shown in Figure 2. A keyboard decoder was 
used to turn this eight-bit scan code hexadecimal signal into 
a four-bit signal, corresponding to the binary representations 
of a hexadecimal value between 0-F. Further, as each DOUT 
signal is output, the done signal is maintained for one clock 
cycle. This done signal goes into an FSM where it acts as the 
deciding state for whether the next state can be implemented.  

 
Figure 2: PS/2 Keyboard Scan Codes [1] 

 
As shown in Figure 1, the keyboard FSM is connected to 

the PS/2 keyboard data input, as well as four registers. The 
FSM is also taking in ‘clock’ and ‘resetn’ inputs, as all 
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synchronous circuits do, meaning everything only happens 
on the clock tick. These four registers each take in one of the 
four inputs the user inputs (two inputs for the hexadecimal 
value of A, two inputs for the hexadecimal value of B). The 
keyboard FSM was designed to act as an enable for each of 
the registers, and as the ‘s’ value for the synchronous signed 
divider, which will be later explained. As shown in Figure 3, 
the FSM uses the done signal of the PS/2 keyboard as the 
deciding factor for moving between states. To move from 
one of the five states to the next, the done signal must be 
sent, else the machine stays in its current state. In addition, 
after the first state, when the done signal is ‘1’, the enable for 
the first register is also ‘1’, allowing the first decoded scan 
code value of the input A to be captured. The same thing 
happens with each of the registers. Once state three is over, 
identified as done being ‘1’ and the fourth register being 
enabled, the machine moves on to the final state, state four, 
where the ‘s’ value of the divider is output, before moving 
back to state zero to start over.  

At the end of each FSM cycle, the registers are all full of 
the data corresponding to the values of A and B. Then, as the 
definition of registers predicts, they all release their values at 
the next clock cycle, where values of A and B are separately 
concatenated and are now ready to use in calculations.  

 
Figure 3: Keyboard FSM 

 

B. Signed Addition and Subtraction 

As previously stated, in the specifications of the 
calculator, the inputs are taken as signed hexadecimal 
numbers. This makes addition and subtraction relatively 
simple. For addition, the binary versions of A and B are sign 
extended, to account for overflow, and then simply added 
together, using the adder concept learned previously [2] with 
a carry-in value of ‘0’. 

For subtraction, it is known that subtracting a negative is 
the same as adding a positive, and that subtracting a positive 
is the same as adding a negative. To simplify this operation, 
this logic was used, applying two’s complement (2C) to B, 
and then adding this value to A. If B is originally negative, 
subtracting it from A is the same as adding the absolute 
value of B to A, so applying 2C turns the originally negative 
B positive so its value can be added to A. Similarly, if B is 
originally positive, applying 2C turns it negative, and by 
adding this negative version to A, it acts the same as if we 
subtracted the positive B from A. To implement this, A and 
B are, once again, sign extended, but B is also inverted. 
Then, these new values are input to an adder with a carry-in 
of ‘1’, to act as the second step of applying 2C to B.  

The result of these two operations will end up as the 
mathematically accurate, signed answers one would expect. 
The answers are also sign extended to be 16 bits, to match 
the answers given from multiplication, as seen next. 

C. Multiplication 

When multiplying two numbers, the sign of the output 
depends on the input. When both inputs are positive, the 
output is also positive. When one of the inputs is positive but 
the other is negative, the output is negative. Finally, when 
both inputs are negative, the output is positive, as the 
negatives cancel each other out. The magnitude of the values 
in each of these cases is the same, however. Using this logic, 
it can be understood that multiplying the positive values of A 
and B will give the correct magnitude of the answer, and 2C 
can be applied where appropriate to give the correct signed 
answer of the multiplication of A and B.  

To carry this out, a 2C decider was implemented, to 
determine if A or B were negative and needed to have their 
absolute values taken. This was done by creating a 
component where the MSB of A and B were observed. If the 
MSB was a ‘0’, the new value of the input was simply the 
sign extended version of that number. If it was determined 
that the MSB was a ‘1’, the number was also sign extended, 
but then underwent 2C to give the positive value of this 
number.  

After this, A and B are now both the nine-bit positive 
representations of the values input by the user. A 9x9 bit 
multiplication is carried out, using techniques implemented 
in the laboratory section of this course [2]. The output of this 
cross is still positive, even in cases where the sign of the 
numbers input by the user do not match. To solve this, A and 
B’s original MSBs are observed and if appropriate, 2C is, 
again, applied to the answer, giving the user the correct, 16-
bit, signed answer. 



D. Divison 

As with multiplication, division follows the same rules of 
the output being negative when the input signs do not match. 
However, when implementing the dividing component of the 
calculator, it was decided to simplify things even further and 
take the absolute value of both A and B regardless of if it 
was necessary. Then, as implemented in the laboratory 
section of this course, a division operation was implemented 
[2]. After the division of the absolute value of A and B was 
executed, the sign of the answer had to be decided. To carry 
this out, the simple sign extended version of the answer was 
found, as well as the 2C version of the answer. To select 
which was correct, the MSBs of the original inputs of A and 
B were concatenated and acted as a select for the multiplexer 
that decided which answer would be taken. If the MSB 
concatenation/select was 00 or 11, the simple signed 
extended version was output. If the select was 01 or 10, this 
means that one of the inputs was negative, meaning the 
answer should also be negative, meaning the multiplexer 
would output the sign extended, 2C version of the answer. 

In addition, when using the divider design given in the 
laboratory section of this course, the inputs were, of course, 
A and B, but there was also an input ‘s’ necessary for the 
divider’s FSM, which was manually turned on/off by the 
user using a button. This is impractical to have the user do in 
a four-operation calculator, so this ‘s’ value was taken care 
of by the FSM in the keyboard design, as shown in Figure 3. 
After all values of A and B are input into the registers, ‘s’ is 
assigned a value of ‘1’ so the divider can operate correctly 
with the inputs it has. Also, as shown in the laboratory 
section, the divider uses a series of registers and synchronous 
circuits, which can only operate corresponding to the clock 
cycle given. This means that the answer of the divider is only 
accurate when the done signal is high. 

E. Answer Output 

After determining the values of all four operations using 
the inputs determined by the user, it is necessary to consider 
which switch the user flipped up, indicating which operation 
was intended to be executed. SW0 acts as addition, SW1 acts 
as subtraction, SW2 acts as multiplication, and SW3 acts as 
division. The calculator was designed to automatically show 
the output as soon as the second hexadecimal digit of B was 
input, so there was no need for an “equal” switch. The 
switches went into a priority encoder, where their values 
were transformed into a two-bit output. This two-bit output 
acts as the select for a four-to-one multiplexer. The inputs of 
the multiplexer consist of the four results of each of the four 
operations using A and B. The positions of each operation 
result into the multiplexer match the priority encoder 
designed to appropriately choose the value displayed to the 
user depending on their desired calculation.  

The resulting 16-bit output of the multiplexer is then split 
into four four-bit signals to be input to a seven-segment 
serializer provided [2]. Within the seven-segment serializer 
is a decoder to transform the binary value of each four-bit 
signal to its hexadecimal equivalent. The serializer works to 
enable the four right most seven-segment displays of the 

Nexys board, and, finally, show the signed, hexadecimal 
version of the result of the proper operation. 

III. EXPERIMENTAL SETUP 

This calculator was set up using a PS/2 keyboard, 
connected to a Nexys A7-100T board, connected to the USB 
port of a computer running the Vivado software. In this 
software, all previously mentioned components were coded 
in VHDL, using brand new code, as well as previous code 
from laboratory assignments/the course page.  

The inputs were obtained via the keyboard, as well as 
SW0-SW3, and outputs were displayed on the board’s four 
rightmost seven segment displays. Both the inputs and 
outputs are represented in the hexadecimal number system, 
which is simply compressed binary, allowing for a more 
efficient way to calculate.  

Prior to putting all components together, tests were 
conducted on each to ensure they were working properly and 
zone in on where errors were formed. For example, each 
operation file was individually tested, by writing a testbench 
and utilizing Vivado’s simulation tool. Only after confirming 
each was working as expected were they added into the final 
project. By doing this, excessive troubleshooting and error 
mitigation were not needed, as the source of the problem 
could easily be identified by examining each signal within 
the component.  

After confirming these operation blocks were working, a 
separate “test” project was made to ensure they were port-
mapped together correctly. This project included all parts 
besides the keyboard components and the seven-segment 
serializer components, meaning one had to manually enter 
the DOUT values for each test case, as well as the done 
signals that would be otherwise provided by the keyboard. 
The seven-segment serializer was also not included, so that it 
could be confirmed that the results were coming through 
each component correctly. After everything was confirmed 
to be working correctly, a final project was made, including 
every single source of every single component, as well as a 
constraints file to allow for the board to correctly assign each 
physical component to its corresponding virtual component. 

The expected results are that the user will enter the two-
digit hexadecimal value of A, then flip the corresponding 
switch of the operation they would like to carry out, then 
input the two-digit hexadecimal value of B, and immediately 
be provided with the mathematically correct, signed, four-
digit hexadecimal value on the board’s four rightmost seven-
segment displays. After each calculation is carried out, the 
user is expected to reset/clear the calculator via the CPU 
reset button on the board.    

IV. RESULTS 

As previously explained in the experimental setup, 
testing was conducted in phases. By simulating the 
intermediate project, without including the keyboard/board 
interface, results were correct, as shown in Figures 4-7. Upon 
receiving these results, it was essentially without a doubt that 
the final, complete project would give the expected results. 

The results obtained by this project were as they were 
expected to be. Upon two signed two-digit hexadecimal 



inputs, and the corresponding switch being flipped up, the 
calculator does give the mathematically correct signed 
hexadecimal outputs displayed on the seven-segment 
displays. A video of the functioning calculator can be seen 
here: https://www.youtube.com/watch?v=lcjVxKpi5EU 

Digital logic design was the topic of this course, and by 
designing a system that achieves this, much was learned in 
the process. The implementation of synchronous circuits was 
explored even further, as they were only touched on in the 
last two laboratory assignments. The idea of using signed 
inputs was also dived into, seeing that the laboratory 
assignments pertaining to calculations were unsigned and 
various steps had to be taken to convert these base operations 
from unsigned to signed, as explained previously. Further, 
the PS/2 keyboard/Nexys A7-100T board interface and 
seven-segment serializer had to be understood before 
implementing them. Previously, the switches on the board 
and the occasional button on the board were used and 
outputs were displayed on a single seven-segment display. In 
this project, inputs were taken using a combination of the 
switches on the board and an external USB keyboard, and 
outputs were shown on multiple displays. Upon completion, 
these concepts became much clearer. 

CONCLUSIONS 

At the end of this project, concepts regarding digital logic 
design are exponentially more coherent. This project allowed 

for all concepts learned throughout the semester to come 
together nicely, from basic binary addition to applying 2C to 
simple asynchronous circuits to more complex synchronous 
circuits and FSMs to designing a digital system using various 
components and implementing them on a Field 
Programmable Gate Array (FPGA).  

Troubleshooting and finding errors within the project 
were also topics that were crucial to its completion. By being 
able to single out errors and discrepancies within each 
component, each part came together much more seamlessly 
in the end. The way this was done was through writing 
testbenches and performing simulations in Vivado and 
ensuring each component was working as expected. When 
results were unexpected, various signals from within the 
components were analyzed to pinpoint the exact root of the 
problem. 
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Figure 4: Addition Simulation Results 

 

 
Figure 5: Subtraction Simulation Results 
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Figure 6: Multiplication Simulation Results 

 

 
Figure 7: Division Simulation Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


