
Small Microprocessor
Final Project Report

December 9th, 2023

BJ Blume, Erik Rosenkranz, Jason Rosenkranz
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: bjblume@oakland.edu, erosenkranz@oakland.edu, jrosenkranz@oakland.edu

Abstract: This small microprocessor utilizes an
arithmetic logical unit, as well as a control unit, in order
to process data inputted by the user. The processed data
can then be stored, or shown visually to the user. A
Basys 3 Artix-7 FPGA Trainer Board was used to
implement the small microprocessor. The functionality
of the microprocessor can be described with VHDL.

I. OVERVIEW

This report covers how a small microprocessor was
created (i.e. the different components and connections)
based on the knowledge of VHDL learned in ECE 2700.
A picture of the different components and their
connections used to make the small microprocessor can
be found in the appendix (see Figure 1). This project was
chosen to increase understanding and to further explore
microprocessors. To expand upon the example shown in
class, two additional storage registers are included, as
well as developing a detailed functionality table. In
addition, to simplify the complexity of inputs for the user
into the microprocessor, we enabled the circuit to use
signed-and-magnitude. Simply put, this project is a basic
Central Processing Unit (CPU) although for
completeness, a memory would need to be included.

The small microprocessor can be understood by
analyzing each of its key components: the inputs, the
outputs, the selector mux, the registers, the Arithmetic
Logic Unit (ALU), and the control circuit. All of these
components are described in more detail in the
Methodology section.

II. METHODOLOGY

A. General purpose
For a simple microprocessor, the user will input a

(SM) binary number from [-15,15] and control
instructions. (As well as a resetting feature and an enable
in w.) The input will be stored into a register, then
operated on by future inputs and the Arithmetic Logic
Unit (ALU). Results of this arithmetic will be output onto
four seven segment displays. The output will be a
hexadecimal number from [-800,7FF].

B. Inputting value
There will be five user input switches with switch 15

being the sign of the bits and switches 14 through 11
being the number. This goes into a sign and magnitude to

two’s complement converter, thus the possible values
range from negative 15 to positive 15.

C. Outputting resultant
As seen in the diagram (Figure 2), a 12 bit bus will be

transformed into an output to be displayed to 4 seven
segment displays. The leftmost display will either display
nothing or a negative sign, depending on if the number is
negative or not. The 12 bit number will be converted into
a positive number and its result will be displayed on the
remaining 3 displays.

First, the value from the bus will be stored in a
register. To be displayed, it will first be converted into
sign and magnitude (binary). After the value is converted
into sign and magnitude, both components will be used in
separate hex to seven segment converters. The sign goes
into the specialized hex to seven segment converter, and
the remaining 12 bits of magnitude will be partitioned
into 3 groups of four bits, each to be converted by use of
hex to seven segment converters. The specialized
converter will output CACG code for either an empty
display or a negative sign, indicating the output sign. The
result of the four seven segment converters will go into a
MUX, and a counter will control which value is
displayed, along with its corresponding seven segment
display on the board through use of a decoder.

D. Storage Registers
There are four storage registers. These registers will

hold values inputted by the user or resultants from certain
operations. There is also a register to hold the first
operand of the ALU, since the main data bus can only
represent one value at a time. There is also a register to
hold the answer generated by the ALU.

E. Multiplexer (Mux)
This microprocessor features a 6 to 1 multiplexor,

which sends particular data to the main data bus. The six
inputs to this mux are the four storage registers, the input
register, and the answer register. This way, the flow of
data can be manipulated by changing the selector of the
mux, as well as enabling the storage registers.

F. Control Circuit
The control circuit receives new instructions from the

user, which are input via nine switches on the FPGA
board. Eight of these switches include the instruction for

mailto:bjblume@oakland.edu
mailto:erosenkranz@oakland.edu
mailto:jrosenkranz@oakland.edu

the microprocessor to perform (IR), and the ninth switch
is an input w, which when activated, will accept the
instruction currently set on the board. There are sixteen
distinct functions included in this microprocessor. A
detailed functions table is included in the appendix (see
Figure 3). Depending on the function specified by the
instruction, different actions will be carried out by the
control circuit. For instance, operations involving the
ALU will take the first four bits of IR as an operation
code, and then perform the specified operation. Once an
instruction is performed, an LED will light up to indicate
that the action specified by the instruction has been
completed. The control circuit contains a finite state
machine (FSM), which controls most aspects of the
microprocessor. The control circuit also contains two
registers and a decoder to load in a new instruction,
enable/disable the display, and to enable/disable certain
registers. A detailed figure of the control circuit is shown
in figure 4.

The many inputs and outputs of the control circuit are
handled by the FSM. Every 10 nanoseconds, the state of
the FSM is determined. Each state specifies a certain set
of values to be output. Some states will occur in sequence,
regardless of the inputs, since the flow of data cannot be
completed in just one clock cycle. The ASM diagram for
this FSM is shown in Figure 5.

As an example, 4 clock ticks are required to add two
values in the storage registers. The first clock tick uses the
MUX to select the first operand, and to enable the
operand register. The second clock tick uses the MUX to
select the second operand, send the op code to the ALU,
and enable the answer register. The third clock tick uses
the MUX to select the answer and enable the register
where the result is to be stored. After the fourth clock
tick, the answer will be stored in the correct storage
register.

G. ALU
The aforementioned partition of IR will determine a

specific operation of the ALU. These instructions will be
passed only in certain states of the microprocessor, as
outlined by the FSM State diagram. One can also note
that A and B go into the ALU which is controlled by the
input op. Op is determined by the control circuit and is
then converted to sw. The output of the ALU then goes
into the ANS, which is controlled by the input E_ans as
determined by the control circuit. The mux is also
controlled by the control circuit and has a sw size of three
bits. The control circuit has an input w and IR which are
determined by the behavior of the microprocessor. Once
everything is completed in the control circuit, the done bit
is set and lights up an LED (Light Emitting Diode).

III. EXPERIMENTAL SETUP
To simulate the code created for this project, Vivado

2019.1 was used with exact specifications matching those
of the ECE 2700 laboratory. Doing this enables us to
confirm the interconnections and functionality between
components. For full analysis on our simulations, please

refer to the VHDL code provided. In addition to
simulating the testbench, a bitstream of the code was also
generated and uploaded to the FPGA board. This way, the
functionality of the microprocessor could be analyzed in
real-time. The expected results are that the small
microprocessor performs the operation based on the user
input and the data in the registers. The discussion of the
simulation results and if the correct results were found, is
in the results section.

IV. RESULTS
In looking at the example operation simulation graphs,

one can see the results of storing values into two different
registers with one number being positive and the other
being negative. One can also see an operation of the
absolute value completed (calculated by the ALU). Each
of the operations takes several clock cycles to perform, as
discussed previously in the methodology section. In
real-time, however, these operations will appear
instantaneous to a human user. A link to a live
demonstration of the microprocessor is included in the
references section. All of the results obtained are as
expected, as each of the functions was verified to be
working on the FPGA board.
This project allowed us to utilize many of the topics

learned in the ECE 2700 course. The input and output
modules utilize knowledge of different number systems,
and how to convert between them. The ALU utilizes
many of the arithmetic operations studied, as well as some
of the knowledge from the lab component of this course.
The control circuit utilizes the concept of a FSM to
control the flow of data, and carry out complex
synchronous processes.

V. CONCLUSIONS
Creating a small microprocessor was a sufficient

introduction to using VHDL code through Vivado to
create a larger scale project. General functionality of the
microprocessor and the steps to program it were better
understood through the completion of it.
In creating the microprocessor, two errors found during

real time testing were solved by identical solutions. By
containing input w and the Q output of the modulo-4
counter into appropriately sized registers, influence of w
outside of stage one and the skipping of lit segments
AN(1) and AN(3) were respectively avoided.
To improve this project even more, use of a keyboard

as input would ease the arduous task of flipping up to 15
switches on the Artix-7 FPGA Board. More functions and
higher functionality would also enhance the capabilities
of the microprocessor, as well as adding more storage
registers.

VI. REFERENCES

[1] Example video of project working on board, link
to video demonstration: https://youtu.be/S45skjf9Sfw

https://youtu.be/S45skjf9Sfw

[2] Daniel Llamocca Obregon, National Science
Foundation, “VHDL Coding for FPGAs” VHDL Coding

for FPGAs (oakland.edu)

APPENDIX

Figure 1: Block Diagram of Microprocessor
For visual simplicity, not all internal signals are shown above (e.g. enable).

Figure 2: Output Module Diagram

https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

General and Arithmetic Operations Bitwise Operations

IR Code Functionality IR Code Functionality

0000RA1RA0X
X

Store input into RA 1010RA1RARB1RB0 RA=RAOR RB

0001RA1RA0X
X

Display the value of RA on
7-seg display

1011RA1RARB1RB0 RA=RA AND RB

0010XXXD 7 segment on/off (D = 1/0) 1100RA1RARB1RB0 RA=RA XOR RB

0011RA1RARB

1RB0

Copy the value of RB into
RA

1101RA1RARB1RB0 RA=RA NOR RB

0100RA1RAX
X

RA=RA+1 1110RA1RARB1RB0 RA=RA NAND RB

0101RA1RAX
X

RA=RA-1 1111RA1RARB1RB RA=RAXNOR RB

0110RA1RAX
X

RA=-RA *RA and RB are two-digit codes. Since there are four
registers, they can be referenced using 00, 01, 10, or 11
*X specifies “don’t care” conditions (they can be either 0
or 1, and it will not affect the functionality0111RA1RARB

1RB0

RA=RA+RB

1000RA1RARB

1RB0

RA=RA-RB

1001RA1RARB

1RB0

RA=|RA-RB|

Figure 3: Control Circuit Functions Table

Figure 4: Control Circuit Diagram

Figure 5: ASM Diagram (for the FSM in the control circuit)

Figure 6: Arithmetic Logic Unit (ALU) Diagram

Figure 7: Example Operation Simulation Store +5 into Register 0

Figure 8: Example Operation Simulation Store -4 into Register 1

Figure 9: Example Operation Simulation Register 1 = |Register 1 - Register 0|

