
4 Way Traffic Controller

List of Authors (Fatin Kamash, Andrew Pettit, Alen Cehajic, Emmanuel Co)

Electrical and Computer Engineering Department

School of Engineering and Computer Science Oakland University, Rochester, MI

e-mails: fkamash@oakland.edu, akpettit@oakland.edu, acehajic@oakland.edu, eco@oakland.edu

Abstract—The purpose of this project is to design, model and

create a traffic light that can command a four–way intersection

and is able to direct a left turn lane. During the design process,

it was found that a simple architecture would yield the best

results. This project will contribute to the understanding of the

digital logic within traffic light operation, as well as the analysis

and production of digital logic systems in the future.

I. INTRODUCTION

II. How do traffic lights work, and can they be made better?

A 4-way traffic light will be created in order to gain more

insight on their inner workings. This project will require the

use of an FSM machine with binary counters, LUTs, and

decoders. A VHDL code on FPGA is presented and

uploaded to NEXYS A7. This report will cover the

methodology, experimental setup, results, and conclusions.

III. METHODOLOGY

A. Using LUT’S

The first design problem was determining the number of
LEDs needed and the total number of patterns required. Our
design accounted for three modes of operations: Normal, Rush
hour and Late night. Each mode of operation is represented by
an LUT with 16 addresses. These addresses are the pattern of
light that should be assigned to two adjacent intersections at a
time at each count. To flip between these patterns, we needed
a counter of 4 bits. 4 bits were needed to give us enough
patterns until the three lights RGB Red, Green, and Yellow
finished their cycle. The phases for the traffic controller were
determined with a truth table that has 12 1-bit outputs, 1 output
for each light. The truth table shows that there are 8 unique
light combinations for traffic lights. Originally a 3 LED traffic
light was considered but that was not effective because it did
not take left turns into consideration.

B. Why using a 4 bit counter?

The original idea was to use a 3-bit counter that shifts
between the different light patterns; this would not work for a
traffic light because each pattern needs to have an addressable
amount of time that it is activated. This problem was resolved
by using a 4-bit counter and using the extra times slots to
duplicate desired light pattern. For example, if a green light
needs to be “ON” longer than the time allotted to one pattern
by the counter, another identical address line (pattern) can be

added after it in the LUT. This system allows for different
light times while maintaining simplicity.

C. FSM machine

A Finite State Machine was used to flip between the four
modes of operations. A state machine with Enable that is
controlled by the counter will activate the machine and trigger
the machine to transition to the next state. The output of the
counter will be branched into two paths: one path to the FSM
machine through an AND gate that will only be “ON” when
receiving “1111” from the counter. the other output bus of the
counter will travel directly to the LUTs to start counting and
flipping between all patterns of a certain LUT.

mailto:eco@oakland.edu

We Needed four states to achieve this goal. The transition
was seamlessly with the 4-bit counter. Each state is associated
with an LUT. A 2-to-4 decoder was used at the output of the
state machine to activate the associated LUT.

Switches were added to the FSM to provide a better
functionality demonstration during the project presentation.
The switches were able to manually shift states in real time
while ignoring erroneous switch combinations. Here is the
state diagram, and the result Block Diagram of the circuit:

D. Final notes : clk divider and added switches?

We allotted about 2 seconds for each address line or pattern

in the LUT. Which is about 32 seconds needed to cycle

through all 16 patterns in each LUT. The counter module

was assigned 0.5 seconds, but we needed the Clock divider

to slow down the counting.

The circuit was designed so it can flip between

State 2, State 3, and State 4 autonomously; however, we

found it is more practical to integrate three switches into our

FSM inputs. Each switch is assigned to turn on one mode

of operation. For example, by flipping switch 1 On, the

FSM will move to State 2 and output “01”.

IV. EXPERIMENTAL SETUP

The code was written using VHDL in Vivado software,
The first step was using the on-board LEDs on the Nexys A7
to validate that our software works. Then a prototype of the
external LEDs were created and connected to the external
ports of the Nexys A7 and used the same program form step 1
to activate the prototype accordingly. Finally, we designed
and created a 3D printed model of the intersection and
connected the external LEDs from step 2.

V. RESULTS

A simulation was run using the circuit and a test bench on
Vivado. The traffic light controller was able to cycle through
different traffic light patterns and respond to the off/on switch.
The light pattern did not cycle until the previous cycle was
complete. The traffic light controller was also able to respond
to state switches properly. This shows that the finite state
machine was able to read the Enable signal and the State
Switches to change decoder inputs. Here is a picture of the
simulation results.

A few issues needed to be addressed:

I. The simulation results were before the clock
divider was added. The result was the LEDs
would change at as high frequency that LEDs
would be displayed as always on. The clock
divider was added as an input to both the finite
state machine and the 4-bit counter to slow the
clock to approximately 0.5Hz.

II. When the switches were added as an input to the
finite state machine, the output of the project

would prematurely change which LUT was
being outputted due to using both the enable and
the switches to switch stages of the finite state
machine. The solution was to disable the enable
input of the finite state machine whenever a
physical switch was enabled.

III. If more than one switch was enabled at a time,
the output of the project would seemingly at
random switch which LUT was being outputted.
The solution was to internally disable any
switch input if more than one was enabled, this
would result in the finite state machine to
permanently remain in whatever stage it was
previously to enabling more than one switch.
The solution to this secondary problem was to
activate the enable input for the finite state
machine if more than one switch is activated at
a time.

All these problems were resolved, and the end product
was a 4-way intersection that cycles through all LUT
tables through a timer and the ability to select which LUT
table to use as per user input.

VI. CONCLUSIONS

Researching the design and creating a logical diagram
proved to be more complicated than we initially expected. By
looking into how speed limits affect the timing of traffic
lights, we developed an estimate of how long each sequence
lasts. The learning curve for this project was thinking of
different logical sequences and choosing the most efficient
one. Through investigating different 4-way intersections
around Michigan, we concluded that our current design is the
most efficient way in managing intersections with left turn
lanes. Finally, we used the knowledge from this class about
LUTs and binary counters and were able to program the

NEMA A7 board. One improvement that could be made is the
wiring of the physical project, the jumper wires would be
replaced with soldered one, and wired inside the poles to make
it professional looking. Ultimately, the research resulted in
newfound knowledge and appreciation to the design of traffic
systems.

VII REFERENCES

[1] A. Pardo, “Finite State Machines explained,” YouTube, 30-Aug-2013.

[Online]. Available:
https://www.youtube.com/watch?v=hJIST1cEf6A&ab_channel=Abel
ardoPardo. [Accessed: 14-Nov-2022].

[2] B. Watson, “Sequential Logic Design Example (Traffic Lights),”
Sequential logic design example (traffic lights). [Online]. Available:
http://www.barrywatson.se/dd/dd_sequential_logic_traffic_lights.htm
l. [Accessed: 14-Nov-2022].

[3] D. Llamocca, “DIGITAL LOGIC DESIGN VHDL Coding for
FPGAs,” FINITE STATE MACHINES (FSMs), Oct. 2022.

[4] Intermation, “EP 063: Introduction to state machines: Designing a
simple traffic signal,” YouTube, 26-Oct-2020. [Online]. Available:
https://www.youtube.com/watch?v=gv5fQrD8XUo&authuser=1.
[Accessed: 14-Nov-2022].

[5] nesoacademy, “Mealy and Moore State Machines,” YouTube, 17-Mar-
2015. [Online]. Available:
https://www.youtube.com/watch?v=0_OZKWdCixw&t=182s&ab_ch
annel=NesoAcademy. [Accessed: 14-Nov-2022].

