
LED Matching Game

Julian Hakim, Matthew Binkowski, Jacob Hamameh, Stefan Maiorano

julianhakim@oakland.edu, mjbinkowski@oakland.edu, jacobhamameh@oakland.edu, smaiorano@oakland.edu

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

Abstract—The LED Matching Game was made by describing

digital circuits on Vivado using VHDL. An initial circuit was

designed, then it was described using VHDL. After debugging,

there were some design changes to ensure that the game works

as intended. One of several design changes involved using the

7-segment displays on the FPGA board instead of wiring an

LED array. This simplified the design but presented a new

challenge: using a serializer to display different segments

simultaneously at different speeds. After research and testing,

the serializer and 7-segment displays were successful for the

design. The project was successful and worked exactly as

intended, but when it comes to complexity in the game there

are a lot more features that can be implemented.

I. INTRODUCTION

This report will cover every step in how we got our project

from an idea to a working design. Beginning with our initial

ideas and designs. The issues we faced and concepts that

had to be scrapped or changed due to poor functionality.

How we adapted to using different components or modified

components to fit our needs. The results obtained from

testing and simulation. Finally, a discussion on our results

and an overall conclusion.

Our main motivation in this project was to create

something that was not extremely simple or complex but

still represented the topics learned in this class as

completely as possible. We believe that we did just that,

using many major components and even designing

completely new ones using strategies discussed in class.

As for our components, we utilized ring counters,

comparators, adders, modulo counters, finite state machines,

seven segment decoders, serializers, multiplexors, decoders,

and seven segment displays. However, not all these

components were used as they were. Of course, the main

finite state machine was designed from scratch just for our

project. The modulo counters needed new counts to be

calculated to fit our timing needs. An enable was created for

the adder to properly calculate the score. Two different

types of seven segment decoders were created to properly

display the score and game. Finally, the serializer was

expanded to have the capacity to output data to eight seven

segment displays by increasing the size of the multiplexor,

decoder, and finite state machine. The main concept we

learned here was the serializer. We knew of it but had never

seen it functioning. Additionally, our project had a strange

functionality compared to simply displaying numbers for a

timer or a similar device.

This project was mainly designed to be a game. Of

course, it is a small game that is limited by the size of the

board that was used. Still, the first thought was of

entertainment and having fun through a simple game.

Maybe something that could be in an arcade, movie theater,

or restaurant that you could win prizes from.

II. METHODOLOGY

A. Shifting Bits

The initial plan was to use shift registers to shift bits

and light up the rows of LEDs. This was the most obvious

example of shifting data across rows, it also had the

capability of pausing and adding more complex bit

configurations if more difficulty was needed. However, we

had trouble getting the bits to wrap around in the same

patterns. After much trial and error, we found out that ring

counters were a perfect solution that did exactly what we

needed and were much easier to use. They weren’t capable

of complex formations of bits, but they were able to be

controlled by other counters to speed up the counting, still

allowing additional difficulty. In fact, this speeding up is

something that was implemented later.

B. Scoring Points

 For the game to be able to display the score, we
implemented a comparator between each two ring counters,
therefore giving us two comparators for the three ring
counters that control the sequencing of the rows. The
comparators determine when the paused LEDs are lined up.
Then, we tied the outputs of the comparators to an adder that
will determine the final score. Although we found that we
needed to add an enable condition to the adder, otherwise the
score would increase every time the ring counter outputs
matched the previous output even when the rows were not
paused. After adding the enable to the adder we were able to
control when the score was summed up without it increasing
throughout the game. We controlled this enable with our
finite state machine.

C. Serializer/Decoders

The serializer and decoders were very closely related in
this project. Typically, a serializer only includes a single
decoder, but we needed two types of decoders. The score
decoder was a normal decoder used for most seven segment

mailto:julianhakim@oakland.edu
mailto:mjbinkowski@oakland.edu
mailto:jacobhamameh@oakland.edu
mailto:smaiorano@oakland.edu

displays. The input for this decoder was simply mapped to
the output of the adder. However, a special decoder was
needed to display the outputs of the ring counters.

We needed to get the proper signals to input into these
decoders. The bits of the ring counters were combined in a
specific way in the VHDL code. For each counter in order,
the least significant to most significant bits were
concatenated into signals A-G. These were 3-bit signals that
would be mapped to the three rows present in the seven-
segment display. Our specialized decoders would take these
signals and light up the proper row on the display depending
on the 1’s and 0’s present in the signals.

As previously stated, a serializer usually uses one
decoder and a multiplexor to select which data goes into it.
As we had two types of decoders and needed eight displays
to be used, we merely fed the decoded inputs directly into the
multiplexor.

D. Finite State Machine

One of the most important parts of the game is pausing

the rows of LEDs. This is the main element of gameplay

and is needed to end the game. For this very important

function, we needed to design a finite state machine. The

FSM always had four states where three were dedicated to

pausing the rows and one was for displaying the paused

rows and enabling the adder to calculate the score at the end

of the game.

First, we tried using one button since a single input

would be simpler for coding and implementation. However,

we ran into major issues with the bouncing of the button

causing rapid switching between states. Instead of

needlessly complicating our code, we decided to change our

approach.

Next, we used a single switch. This solved the

debouncing issue at the cost of less ease of pausing the rows

as the switch would have to be constantly moved back and

forth. Additionally, it could be confusing to keep track of a

switch for the player since it has two positions. Therefore,

this still was not the correct answer.

Finally, we decided on using four buttons. Three for

pausing the counters and one for restarting the game. This

seems inefficient but we had space on the board for this

change. It also allows for the user to keep track of which

row they are pausing and where they are in the game.

E. Block Diagram and FSM

III. EXPERIMENTAL SETUP

Verifying the functionality of the project involved several
steps in Vivado – synthesis, simulation, implementation, and
generating bitstream – and physically testing the board to
ensure it works as intended. Specifically, VHDL was written
in Vivado 2021.1 to describe the circuits from the block
diagram and the Nexys Artix-7 50T was the FPGA board
used to program the circuit. First, we wrote a test bench to
check the following:

1. All values are defined.
2. The ring counter works properly by keeping only 1

bit on at a time and wrapping around once it reaches
the least significant bit.

3. The pausing function works.

After debugging, we ensured that all these conditions
were satisfied and programmed the board; however, there
were several issues. The decoder did not display the
segments as we wanted, but this was simply fixed by
reviewing and carefully correcting the decoder values. There
was bouncing going on with the button, but instead of adding
a specific denouncer circuit, we added a pause button for
each row and designed the finite state machine so it only
cares about the first press for a period.

Lastly, an issue and flaw in our test simulations was that
the values were shifting faster than the eye can see. After
making all the counter speeds faster to be viewable on the
simulation, it turns out that the counter was not used
properly. With debugging via simulation and physical tests,
this issue was fixed.

IV. RESULTS

After weeks of designing, testing, and debugging we
were able to achieve what we wanted while collaborating as
a team. The final result was a functioning LED matching
game. The game utilizes all 3 rows of each seven segment
display on our FPGA board, although we would have liked
to include more rows, that is all that is available in each
display.

While testing, we noticed our serilaizer was not
displaying the score properly on the last display because of
the position of our seven segment decoders within the
serilaizer. We found that decoding the display signal before

the multiplexor made it easier to implement two different
types of decoders rather than placing them after the
multiplexor. Here is a link to watch a short clip of our game
functioning: https://youtube.com/shorts/3KeSnldMaz0.

When planning to use a button to pause the rows, we
knew we would run into bouncing issues and the game
functioning incorrectly. To mitigate this issue, we decided to
use a separate button for each row instead of implementing a
debouncing circuit. This allows our finite state machine to
have a dedicated button for each state that is responsible for
pausing the LEDS. Therefore, when one row is paused with
a certain button, no matter how many times it bounces, the
game will not be affected. This is because the finite state
machine will simply move to the next state which controls
the next row and requires a different button to be pressed to
pause that row. We used this technique as a way of
simplifying the circuit and making it more reliable.

CONCLUSION

The key takeaways from this experience would be
collaborating as a group to implement and utilize our
knowledge to make our idea a reality. Even if you think
your initial design is perfect, there can always be
modifications to help improve your project. When our group
first brainstormed how we want to make the game, we
thought the approach would be to use LEDS in rows on a
breadboard. As time went by as to how we would construct
the design, we believed that it would be far simpler to use
the 7 segment displays on the FPGA board to show which
LEDs are lit up while still meeting all requirements.
Something that could be improved for our project could be
manipulating the speeds of each row using multiple
switches to make it harder for the user to stack the LED
rows. Since the user is limited to connecting only three LED
rows, having a method to make it more difficult would make
this game more effective and enjoyable.

REFERENCES

Some VHDL circuits written by Dr. Llamocca were used as

references and components to complete the project.

[1] http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

https://youtube.com/shorts/3KeSnldMaz0

