
4-Bit Microprocessor/CPU
ECE 2700 Final Project Report

List of Authors (Matthew Irvine, Joshua Duncan, George Trupiano, David Navarre)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-Mails: MatthewIrvine@oakland.edu, JoshuaDuncan@oakland.edu , Gtrupiano@oakland.edu, dnavarre@oakland.edu

Abstract— The aim of this project was to create a simplified
microprocessor that would provide a representation and enable
understanding of the capabilities and functionality of the
device. With basic study, even those who are uninitiated
towards microprocessors can explore the structure and use of
CPUs. This CPU was created by coding in the software
Vivado, using VHSIC Hardware Description Language
(VHDL).

I. INTRODUCTION

This project uses an FPGA board to create a microprocessor.
A microprocessor is an electronic component that can
perform complex functions and arithmetic operations based
on a specific set of commands. The user is able to input a
4-bit unsigned number, along with a 6-bit command–which
functions as the instruction for the microprocessor through
the board’s switches. After a user inputs a number and
command, that user will then press the BTNC button on the
board in order to perform one of many possible functions
based on the command input. These functions include
loading the inputted number from the board, inserting a
number into a register, performing a variety of arithmetic or
boolean operations between two numbers, outputting a
number, in addition to a variety of other operations. The
output of the functions is displayed on the board’s built-in
LEDs. Various programmed components make up the
microprocessor and are what allow it to perform the
aforementioned functions. These components include an
Algebraic Logic Unit (ALU), registers, a multiplexor, and a
control unit.

The inspiration for this project was the Intel 4004 (shown in
Fig. 1) which was made in 1971. This was the first ever
consumer grade microprocessor and it completely
revolutionized the modern computer, and electronics in
general. Today, almost every modern electronic device is
powered by microprocessors. They can be found in cars,
planes, and even common home appliances [1].

Figure 1: Intel 4004
This figure shows the Intel 4004 chip [1].

As can be seen in Fig. 2, the block diagram of the 4004
chip is relatively similar to that of the CPU created in this
project and shares many of the same components. Notably
present are registers, a data bus, multiplexers, an ALU, and
a control unit. It is interesting that even after 50 years of
development, the fundamentals of the microprocessor
remain constant.

Figure 2: Intel 4004 Block Diagram
The figure shows the block diagram of the Intel 4004 [2].

As expected by the march of time, CPUs have advanced far
beyond 4-bits since the 4004, but one can safely conclude

mailto:MatthewIrvine@oakland.edu
mailto:JoshuaDuncan@oakland.edu
mailto:Gtrupiano@oakland.edu
mailto:dnavare@oakland.edu

that modern electronics may not be in their present state
without the 4004 pioneering the technology.

A microprocessor applies much of what is learned from the
ECE 2700 course. All of the components used in the circuit
were explored in depth during the class and this project
applied those lesions yet forced the author’s of this report to
expand upon those teachings.

II. METHODOLOGY

For this project, an ALU, and a control circuit with specific
instruction sets were used, along with multiple registers for
the purpose of storing data. A multiplexor was also used to
select specific registers, which allows that specific data to
be recalled to perform the operation that is called on by the
user. The control circuit further includes a finite state
machine that allows a user to choose and execute the desired
instruction.

The state machine also includes functionality to enable the
register that houses the desired data, as well as the register
to store the data after the execution of an algebraic or
bitwise computation. The FSM is essential to this
implementation; without it there would be no way to pass
through specific instructions to the other components. The
ALU could not function without enabling the correct
register and without ensuring the correct operation is being
called.

It was also critically important to track the correct register
that will be used to read data. The complexity of the
microprocessor is due to the variety of instructions that it
can perform, which is the reason an instruction set and an
FSM are used to provide specific instructions. For example,
if a user desires to increment a number, that user first loads
the number into a register. The user, wanting to increment
this number, then needs to activate the ALU using the FSM.
The FSM is designed to perform this specific operation by
pre-assigning a state in the FSM that relates to certain
conditions. The beauty of the microprocessor is that it is
very flexible and in the case of the subject project, the
microprocessor is also expandable and can be programmed
to include additional arithmetic and bitwise functions.

A. Wiring/Block Diagram:

Figure 3: Block Diagram/Control Circuit

This figure shows the components of the simple
microprocessor.

Upon review of the block diagram, one can see six registers,
one ALU, and one MUX. The 6-bit input of IR is used to
represent the set number of instructions that the
microprocessor can implement. For specific instructions see
Fig 4. The value of IR is inputted into the control circuit.
Based on the value of IR, the Finite State Machine (FSM) is
used to enable the specific registers that are required to
execute the actions seen in Fig 7 . The ‘w’ input is a button
that executes these instructions. Once a value is inputted
into the IN register with the proper IR instruction, the user
can enter any of the available commands to manipulate the
entered value: whether that command is to add one, copy the
value to a register, etc.

2

B. Instruction Set:

Figure 4: Instruction Set/Assembly Code

This figure shows the instruction set of the microprocessor

As previously stated, the instruction set is one of the most
essential components of this project. The Assembly code
allows a user to load in data, copy that data, perform logic
operations, and arithmetic operations etc. Upon review of
Fig. 4, one will notice that the instruction set includes
unassigned functions. This allows for an expansion of the
microprocessor in the form of additional instruction sets.

The potential flexibility of the CPU is vast. A key tenet of
this project was to create simple functionality that could be
successfully implemented over an outright complex design
that may have failed in its operation. As such, neither the
use of signed numbers nor complex operations such as
absolute value subtraction were considered. Admittedly,
these operational instructions could have been easily created
and applied to the project. However, even at present, these
operations could be added without much difficulty. Put
another way, every single operation and added operation in
the instruction set could be executed and the results loaded
to the board’s LED display or to a seven segment display,
should that output component be included to the project.
That is, the microprocessor that was created for this project
can be expanded and developed into an even more useful
tool.

C. Rx and Ry Significance:

Figure 5: Rx, and Ry

This figure shows the jobs that Rx and Ry bits can
accomplish.

To properly understand the FSM, a discussion of the inputs
Rx and Ry are necessary. As stated earlier, instructions
perform specific functions. This is easily understood.
However, there are two other variables that are essential for
this microprocessor to function as intended. Rx is the
variable that dictates whether the R0 or R1 registers are
enabled. Both cannot be enabled concurrently. An Rx value
of ‘1’ enables the R1 register. An Rx value of ‘0’ enables
the R0 register. Notwithstanding that function, Rx also
serves an additional purpose: Rx determines where the
processor reads the stored information and to which register
it is written. The Rx value does this in conjunction with the
select value of the multiplexor. Likewise, Ry also allows the
device to recall and store data.

This seemingly simple aspect of the microprocessors is, in
fact, the most complex part of the design owing to the fact
that these two variables can be used in multiple ways. For
example, given an Rx value of 1, data can be stored in the
R1 register but it also allows the values in the register to be
read. An Ry value of 0 allows for the reading of data from
the R0 register and provides for the computation of an
arithmetic or logic operation with values in the register that
had been previously stored.

3

D. Arithmetic Logic Unit

The ALU is the component that handles all of the boolean
and arithmetic operations of the Microprocessor. The ALU
will take in two different numbers and a command that will
determine which operation is done with the numbers. There
are 3 inputs to the ALU. The first two inputs are “A” and
“B,” and these will be the two 4-bit numbers that the
microprocessor will operate on. The third input is called
“OP,” which will represent the operation that the ALU needs
to perform. “OP” comes from the control unit which will be
described in more detail, infra. “OP” is a 4-bit number that
will be fed into the ALUs internal multiplexor and will in
turn select which operation will be performed. “OP” being a
4-bit number means that there are 16 potential operations
that the ALU is able to accomplish. Some of the possible
operations include incrementing A or B, adding or
subtracting A and B, taking the NOT of A and B, and
various other functions. The full list of operations is
displayed in Fig. 6.

It is worth nothing that this ALU design has the potential to
be expanded to a much larger scale; this will be done by
increasing the number of bits in “OP.” As stated earlier,
“OP” currently has 16 possible values as a 4-bit number. By
increasing the number of bits, more operations are possible.
For example, increasing OP to 5-bits would allow for 32
possible operations that could be performed. The biggest
benefit to adding more bits in this application would be to
allow the ALU to handle negative numbers. Currently, the
ALU is not able to manipulate negative numbers, and the
“A” value inputted must always be the larger number.
Adding more bits would allow the microprocessor to
compute signed numbers, allowing a greater combination of
numbers.. In general, the ALU could be expanded into a
complete calculator if the application required it and this
could be done by simply increasing the possible number of
operations.

Figure 6: ALU Instruction Set
This figure shows the complete instruction set for the ALU.
Based on the value of OP, the function corresponding to the
value will be initiated.

D. Finite State Machine

Figure 7: FSM (Please see link in appendix for full size)

The FSM requires that a certain condition be met before
moving to the process of computation. This condition is
based on the variable, “w” which needs to be equal to ‘1’ for
the FSM to move through the various states. When the FSM
has cycled to the appropriate state, the programming logic
determines which instructions are to be passed through. The

4

conditions will vary based on the instructions. For example,
to load the register, “IN”, this particular register needs to
receive a signal to enable the register. An additional
example would be performing the XNOR operation with
data from registers R0 and R1. Fig. 1 is instructive in this
explanation. To perform an XNOR operation the instruction
needs to be inputted: here the instruction code is 0101 which
allows the microprocessor to perform an XNOR operation
with the values in register R0 and R1. The question now
becomes: to which register are the results stored? Here, if
Rx is ‘1’ then the results are stored in R1 and if Rx is 0 the
results are stored in R0. When this occurs, the Ry value
must be 0. This is to avoid unnecessary redundancy in
storing the values since both registers are needed to perform
an XOR operation. The FSM is programmed so that the user
needs to access data from the R0 register since the R1
register has been designated to both read and store the
computational data. Conversely, if the R0 register has been
set to read and store the data. Additional data will be read
only from the R1 register.

III. EXPERIMENTAL SETUP

To verify the results of this setup, simulations were used to
test whether the microprocessor performed its intended
function. The test bench feature in Vivado was used to test a
series of instructions.

To create this test bench it was necessary to create the
components of the circuit in VHDL

The VHDL code includes:
● Top File;
● FSM;
● ALU;
● Switch IN register;
● LEDout Register;
● R0 register;
● R1 register;
● RA register for the input of the ALU;
● RG register for the output of the ALU; and
● A control Circuit

- FSM;
- 6 bit register for Instructions; and
- Decoder with enable.

The circuit is complex and involves many layers of code,
any of which can hinder the operation of the CPU with a
mere typographical error or missing semicolon. Therefore,
Vivado’s synthesis operation was frequently run to identify
any obvious syntax errors. Even in the absence of syntax
errors, some warnings were found to be detrimental to the
entire project. The latch warning was a particular thorn and
as a result, the team was wary of its presence. The latch
warning denotes that outputs of the FSM lack initial values.

The test bench was programmed with multiple instructions
to help track whether the microprocessor was performing as
intended. Using the test bench with Vivado’s behavioral

analysis tool with a large number of instructions proved to
be constructive at illustrating and demonstrating the breadth
and effectiveness of this CPU Unit–especially while
demonstrating the microprocessor to a group. The
instructions are as follows:

● Load IN with 0110(6)
● Load R0 from IN
● copy R0 to R1
● increment R0 (store result in R0)
● Add R1 and R0 (store result in R1)
● XNOR R1 and R0 (store result in R1)
● Subtract IN and R0 (store result in R0)
● Subtract R1 and R0 (store result in R0)
● XNOR R0 and R1 (store result in R0)
● Load Out R0 to LEDs (store result in R0)

IV. RESULTS

The results of the test bench and behavioral simulation can
be reviewed in the appendix. Upon visual examination, one
can see that the simulation worked effectively. Eleven
instructions were used in the test bench resulting in a large
and almost cumbersome amount of simulation data. For
simplification, the first figure in the appendix demonstrates
a value of 6 (six) being loaded in the first register, R0. The
additional images depict the instructions that were input into
the simulation such as copying the value into other registers,
incrementing R0, etc. After processing multiple instructions,
the results, both intended and produced, was an output value
of ‘1’..

A simple video demonstration of the code and its
application on a Basys 3 board is available via the link
below. In this example, the following instructions were
input into the board and executed by pressing the
appropriate button on the board which corresponds to the
‘w’ input. The instructions are as follows:

● Load IN with 0110(6)
● Load R0 from IN
● Load out R0 to LEDs

This operation results in an output 0110 to the LEDs.

https://drive.google.com/file/d/1DClUGLph3xkf9GPyqZBB
sjWjri1hhRxB/view?usp=share_link

CONCLUSIONS

At the onset of the project, it was advised to “simplify” the
microprocessor. While the initial project was permeated
with grand intentions, the advice proved to be sound.
Despite the relatively basic nature of the microprocessor, the
understanding and comprehension to implement the design
did not come without suffering pains during the initial trials.
When the basics of the project became functional additional
challenges presented itself when the various additional
instructions were introduced. Eleven instructions,

5

https://drive.google.com/file/d/1DClUGLph3xkf9GPyqZBBsjWjri1hhRxB/view?usp=share_link
https://drive.google.com/file/d/1DClUGLph3xkf9GPyqZBBsjWjri1hhRxB/view?usp=share_link

admittedly a modest amount, were difficult to debug and
properly apply. Had the project been more complex, the
truncated timetable of the project would have been a
prohibitive factor to the successful completion of the
project. As it stood, the project was operational with only a
week to spare and was not completely debugged and fully
operational until a day before the deadline, notwithstanding
diligent and constant work from the beginning.

Additional features would have been beneficial. A
seven-segment display would have been useful not only to
the user during the process of testing and developing the
processor. Additional instructions would have also been
beneficial to allow the microprocessor to perform more
impressive feats in the demonstration. The addition of a
RAM component had been discussed but limited time did
not allow this feature to be added.

At the conclusion of the project, what resulted was a
functional microprocessor that instilled an appreciation and
understanding for CPUs that are ever present in today’s
appliances: From a simple coffee maker to a cell phone,
these processors represent a complex and likely
underappreciated aspect in our daily lives. The project set
the goal of making a microprocessor that was capable of
basic arithmetic and logic functions. The project was
successful in its scope and goal, and served the ultimate
purpose of the project: to use the teachings of ECE 2700,
knowledge of FPGA boards, microprocessors, and VHDL
and to expand on these learned principles to understand and
create a CPU using digital logic design.

REFERENCES

List and number all bibliographical references in 9-point
Times, single-spaced, at the end of your paper. When
referenced in the text, enclose the citation number in square
brackets, for example [1]. Where appropriate, include the
name(s) of editors of referenced books. The template will
number citations consecutively within brackets [1]. The
sentence punctuation follows the bracket [2]. Refer simply
to the reference number, as in [3]—do not use “Ref. [3]” or
“reference [3]” except at the beginning of a sentence:
“Reference [3] was the first . . .”
[1] Miller, Michael J. "The Microprocessor at 50: How the 4004

Changed The World." PCMAG, Ziff Davis, 15 Nov. 2021,
www.pcmag.com/news/how-the-4004-changed-the-world.
Accessed 3 Dec. 2022.

[2] Sack, Harold. "Intel 4004 – The World’s First
Microprocessor." SciHi Blog, SciHi, 15 Nov. 2021,
scihi.org/intel-4004-microprocessor/. Accessed 3 Dec. 2022.

[3] D. Llamocca, Reconfigurable Computing Research
Laboratory. [Online]. Available:
http//www.secs.oakland.edu/~llamocca/index.html.
[Accessed: 14-Nov-2022].

[4] Xilinx, “Vivado ML Overview,” Xilinx. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html.
[Accessed: 14-Nov-2022].

APPENDIX

1. Simulation Snapshots and FSM
https://drive.google.com/drive/folders/1V_jQyd0x
cCKFhThhEq66CJoeQi55342u?usp=sharing

6

https://drive.google.com/drive/folders/1V_jQyd0xcCKFhThhEq66CJoeQi55342u?usp=sharing
https://drive.google.com/drive/folders/1V_jQyd0xcCKFhThhEq66CJoeQi55342u?usp=sharing

