
Signed Calculator

List of Authors (Jason Wend, Manuel Muresan, Fady Sto, Karam Matti)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: Manuelmuresan@oakland.edu , Fadysto@oakland.edu , Kmatti@oakland.edu, jgwend@oakland.edu

For the final project we have decided to create a signed
calculator. Our calculator will be able to add, subtract,
divide, and multiply. As a signed calculator it uses positive
and negative numbers. The results are in BCD and
our inputs are 6 bits in sign and magnitude binary form.
Also, our results will be displayed on the 7-segment display
that is on the FPGA board. Positive and negative signs will
be displayed, and the answer will be displayed in decimal
form.

Introduction

For us to make our project, we will use Vivado to make
the signed calculator that will be able to do the four known
operations (adding, subtracting, multiplying, and dividing).
The answer will be displayed on the 7-segment display in
decimal form followed by the positive/negative sign.

Our main goal in selecting a signed calculator is to

deepen our grasp of manipulating binary data. This effort
will increase our understanding of registers in addition to
seven segment displays. To save our input data, we intend to
use several registers, and to display our solution, we intend
to employ various seven-segment displays. The three
primary functions of any digital system are data

receiving/saving, data manipulation, and data presentation.
These three functions are covered by our signed calculator.
Numerous modules used in this calculator, such as the
multiplier and register, were covered in class. The calculator
will, however, also make use of some logic circuits that
were not discussed in class, like the BCD to binary
converter and a unique 5-bit hexadecimal decoder. To build
a reliable yet user-friendly calculator, our goal is to apply
the fundamental logic circuits that were taught to us in class.

I. METHODOLOGY

Section 1: Magnitude
In designing the simple sign and magnitude binary
calculator, we decided to approach the actual calculator
circuit in two parts: computing sign (positive or negative)
and computing magnitude. In computing magnitude, we
used many of our labs as individual components. For
instance, lab 2 computed the magnitude of input 1 minus
input 2, which we used as the “subtractor” for our
calculator. We also used one of the 5-bit adders from lab 2
as our “adder, the entirety of lab 3 (the array multiplier) as
our “multiplier”, and the entirety of lab 6 as our “divider”.
Circuit diagrams of each of these components are shown
below.

Adder:

Here the is the five bit adder which is composed of five full
adders. The circuitry for the full adders is also shown.

Subtractor:

Note that the components marked with a “+” sign are five
bit adders.

Multiplier:

Divider:

Note that for the divider, we did not utilize the “Hex to 7
segments decoder” since we were not displaying the
remainder of the division. The only outputs we cared about
were “done” to indicate that the division has been
completed, and “Q”, the quotient.

A subtlety in our circuit design lies within the divider
component. Because it utilizes a clock and its own FSM, its
processes are synchronous and require a clock and a reset
button. Because the other operations (addition, subtraction,
and multiplication) were entirely asynchronous, this led to
complications. Adding a reset button to our inputs partially
fixed our problem, but now the correct sign no longer
displayed with this computed magnitude, since there was a
delay in the division operation. In order to solve this, a D
flip-flop with enable was implemented so that it stored the
output sign and only displayed it along with the magnitude
when the operation was complete.

Section 2: Sign

Computing the sign of the answer involved making entirely
new components. For multiplication and division, it was
fairly simple. The truth table for the input signs and output
sign for them is as follows:

This relationship can be represented by an XOR gate which
we included in our circuit. For addition and subtraction,
determining the output sign was much more complicated. In
a process we called “FSM_sign”, we figured out that it is
determined by the signs of the inputs, which magnitude was
larger, and the inputted operation (addition or subtraction).
The truth table is as follows:

In determining the output sign, we also needed to figure out
which operation, addition or subtraction, was really
occurring. For instance, If the user inputs 5–(-7), the way
we compute the answer is by saying “since magnitude 1 is
less than magnitude 2 (mag1<mag2 = 1), the sign of input
one is positive (sign1 = 0) and the sign of input 2 is negative

(input2 = 1), and the inputted operation is subtraction
(operation = 1), then the true operation that occurs is
addition of the magnitudes (operation output = 0) and the
sign of the answer is positive (sign output = 0)”. The
calculator would compute 5 +7, which is equal to 12, and
then the answer is positive. In implementing this circuit, we
used a VHDL process and if-then statements to code the
logic, however it would have been much more realistic and
simpler to use logic gates and comparators to compute the
outputs. The computed operation from this component is
sent to a decoder which selects which operation process the
inputs go to. After, the computed sign is attached to the end
of the bits.

Section 3: signal selection and conversion
Another important aspect of our circuit that has been
modified is our “mux”. This process serves to select the
proper operation to output like a 4-to-1 multiplexer,
however it also uses the output operation from the
”FSM_sign” as another select line to choose between
addition and subtraction, since the true operation that was
being performed changes. We also inserted zeros between
the signs and magnitudes of the addition, subtraction, and
division signals to make them all 8 bits at the output signal
(the multiplication signal was already 8 bits).

BCD:

After the operation has been resolved by the corresponding
functional block, the result obtained is unsigned, and we can
add the sign bit in the MSB location, converting it to sign
and magnitude. The sign is kept separate because our
multiplication and division blocks were originally obtained
from lab2 and lab6 respectively, and they were performing
unsigned operations. We chose to implement a Binary
Coded Decimal (BCD) converter which supplies the four
separate 4-bit signals, each of which will represent one
character of the 7-segment display array. This component
was obtained from Dr. Llamocca’s website [1]. It uses a 20-
bit shift register, a counter, an adder, and an algorithm in
order to convert the input bit stream into the decimal
equivalent separated by order of magnitude. When the
whole input has been shifted to the final position of the shift
register, we are left with three 4-bit binary coded decimal
representation for the hundreds, tens, and one’s place. Some
minor pre-processing is done to our input, by removing the
sign bit and replacing it with a leading 0. This is done to
maintain the 8-bit unsigned binary input to the BCD
converter. This converter takes the 8-bit magnitude input
and converts it into the decimal representation, with each
digit being represented by four bits. Each of the 4-bit signals
generated by the BCD converter can now be separated and
passed along to the next step, which is the serializer.
Serializer:

The Serializer used was also obtained from Dr. Llamocca’s
website [1]. The purpose of this component is to display
four separate characters on the 7-segment array. Since the
FPGA board has all 7-seg input pins tied together, we need
the serializer to enable the four 7-segment displays to work
in sequence, briefly allowing current to flow for only one
digit at a time. The serializer uses counters and the clock
signal to make sure the information displayed corresponds
to the correct digit. The Finite State Machine inside the
serializer repeats the cycle once the final digit has been
displayed, returning to the first digit. The serializer input
passes through a decoder which contains all the possible
characters which can be displayed on a 7-segment display.
The left digit is only used to display the horizontal center
segment, indicating a negative result. Even though
originally configured to work with Hexadecimal inputs, it
still works in our case, as unsigned binary and Hex
characters are the same for 0-9. The only difference is the
addition of a special case which is only used by the segment
displaying the negative symbol. The information available
to the 7-segment displays is the same for all the digits, but
only the correct one will be allowed to display that
information. The 7-bit signal output by the Hexto7seg
decoder is synchronized with the index of the corresponding
digit. This is achieved by the select line, which controls the
multiplexer. The mux is what completes the circuit for each
individual element of the 7-seg array. The 2-bit select signal
has four possible cases: 00, 01, 10, and 11. Each case
corresponds to activating one of the digits on the array.

Figure 2- Example of 4-digit 7-segment display

The illustration in Figure 2 was obtained from the

Tutorials/VHDLFPGA/Unit 7 notes available on the list of
examples and VHDL code from Dr. Llamocca [3]. This

design was adapted to work in our situation, with the major
difference being the source of the BCD numbers in our case
comes from the operations being performed instead of
counters.

Figure 3- Hex-to-7seg display decoder

The decoder used to interpret the timing diagram outputs

“LEDs” can be seen in Figure3. A few sample calculations
are simulated in the experimental section below.

II. EXPERIMENTAL SETUP

When all the project files were finished, we started testing
our project using Vivado's simulation feature. We
discovered quite a few things were not working as intended
right away. There were a few minor issues that were
resolved right away, including some typos in the top file's
port mapping and the BCD decoder.

Figure 4: Addition

Example of operation 00, which represents addition.
6+5=11. The 7-seg display is active low, and therefore we
see the bits of CA_CG as a flipped version of the sequence
specified in the decoder.

Figure 5: Subtraction

Subtraction example showing the result of –9 - (3) = -12.

Figure 6: Multiplication

Multiplication example showing the result for input1 = 6,
input 2= 5, and the result in sign and magnitude =30. The
CA_CG display output is toggling between the 4 different
7-segment display characters, displaying a different digit on
each one.

Figure 7: Division
The division operation requires two reset operations. We
have the slide switch reset as well as the push button reset
switch which was used for the previous operations.

III. RESULTS

The results for our project were like expected a calculator
does all the four operations and you can go up to 127 also
displaying the sign if the number was positive or negative in
addition displaying numbers in decimal form on the FPGA
bored by using four 7-segment display. It was hard to make
the FPGA bored display the answer in decimal form because
as we all know the FPGA bored uses hex decimal numbers.
We used a converter from a Binary to BCD and that

converter will allow us to display the answer in a decimal
form. The result was explainable and make since if the
highest and lowest numbers were (121, -121) after that the
results will to be unexplainable and that’s only because we
were using a 7-bits output.

IV. CONCLUSION

Following the project's completion, our team was able to
draw a few key findings. One thing we discovered early on
was the value of creating a thorough yet understandable
block diagram. Without a visual tool like the block diagram
to determine which issue each group member should focus
on, project coordination would have been exceedingly
challenging. Similar to the block diagram, our team saw the
value of using the error codes that Vivado provided after a
failed implementation. We were able to identify precisely
where and how the project was failing thanks to the error

codes. Overall, our team was quite happy with how our
project turned out. One of the issue our team faced was not
be able to go higher than 121 but based on our design and
calculations we should of be able to go higher than 121.The
improvement that can be added to this project is to make the
input an advanced keyboard connected to the FPGA board
that keyboard should include numbers and all the operations
that our calculator can do.

The materials used for this project were Lab 2 for the add
operation, lab 3, for the subtract operation, Multiplier for the
multiply operation, and lab 6 for the division operation.
Finally, we also used a converter from Binary to BCD we
got it from Dr. Llamocca’s website page.

V. REFERENCES
[1] D. Llamocca, VHDL coding for fpgas. [Online]. Available:

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.htm
l. [Accessed: 02-Dec-2022].

[2] Fall 2021 - ECE2700: Digital Logic Design. (n.d.). Retrieved
December 2, 2022, from
http://www.secs.oakland.edu/~llamocca/Fall2021_ece2700.ht
ml

[3] D. Llamocca, “Digital System Design - Oakland University,”
Tutorials/VHDLFPGA/Unit7. [Online]. Available:
http://secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%20
7.pdf. [Accessed: 04-Dec-2022].

