BCD to Binary Converter

Conversion of a Decimal Input to a Binary Output

Shrutee Rakshit, Preethi Venkatesan, Sahijnoor Mahal, and Mahdee Rahman
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI
e-mails: shruteerakshit@oakland.edu, pvenkatesan@oakland.edu, smahal@oakland.edu, and mahdeerahman@oakland.edu

Abstract - This project will convert a decimal number input via
a PS/2 keyboard into a binary output that is shown on the
LEDs of the Nexys A7-100T FPGA board. The purpose of this
project is to convert human input decimal numbers into a form
understood by computers.

1. INTRODUCTION

This report will cover the process of designing,
simulating, and implementing a BCD to binary converter. A
keyboard will be used to enter the input. The outputs will be
displayed on the LEDs of the Nexys A7-100T board. The
input will be a 4 digit decimal value, in other words, 16 bits
in BCD. The output will be 14 bits in binary.

The motivation for this project was to provide a method
of translation between human input numbers and computer
language. While humans have a better comprehension of the
decimal system, computers only function using binary
numbers. Our project provides a method for human input
decimal numbers to be converted into a binary output that a
computer can understand and use. This project also saves
people the time and hassle of converting decimal numbers to
binary numbers manually.

Several topics learned in class were applied in this
project. One such topic was conversion between BCD and
binary. Binary multiplication and addition were also topics
that were important to this project.

Another topic utilized was finite state machines (FSMs).
In this project, a FSM was used to determine when a user
inputs a number by pressing a button on the keyboard, as
well as keeping track of the number of decimal numbers
inputted.

Additionally, everything learned in class about VHDL
was crucial to this project, notably structural description.

Despite all that was learned in class, there were still
some topics which required supplemental research. The
process of converting BCD to binary was taught in class.
However, a circuit needed to be designed to convert BCD to
binary for this project. Therefore, several methods of
converting BCD to binary were researched, such as the
double dabble method, before choosing the one that was
used for the actual project.

Another topic that was researched was how to use a 4x4
matrix keypad with the Nexys A7-100T board. However, in
the end, a PS/2 keyboard was chosen for the user input
instead of the matrix keypad.

This project has many applications, including keypad
input from humans to machine readable numbers. Also, this
project can aid engineers and computer scientists in
computer programming and digital logic.

II. METHODOLOGY
A. Top Design and FSM

In this project decimal numbers were inputted
through a keyboard as the human input. The output of the
keyboard was transferred to the four 8-bit registers using a
finite state machine which had four enable signals. Using
this the keyboard output was added to the register depending
on which enable is equal to 1 as the finite state machine had
en0, enl, en2, and en3 for four registers. The input in those
registers then went through 4 decoders. Each register had its
own decoder. Those decoders decoded the 8 bit keyboard
scan key to its 4 bit BCD equivalent.

resetn—(L Output
ck——p 414
| BCDtoBinary ‘
4 44 44 44
p0 p1 p2

Decoder

Decoder Decoder Decoder

8 8 8 8
Register Register Register Register

TTIT 171

en0 eni el en3
q0 ql q2 q3

o

ps2c pout 8
Keyboard o
ps2d Code 3 ———>en0
B one ———>en1
FSM ——>en2
P —>en3

Figure 1: Top Block Diagram

Figure 2: FSM

B. BCD to Binary Converter

The output of each decoder was sent to four 4-bit
registers. The 4 bit BCD numbers from each of the four
registers were further multiplied using 10-bit multipliers. As
10-bit multipliers were used, the 4 bit BCD inputs were sign
extended to become 10 bits. The numbers in the first register
were multiplied by 1000 and the numbers in the second
register were multiplied by 100. Similarly the 3rd register’s
numbers were multiplied by 10 and the 4th register’s
numbers were multiplied by 1. The outputs of all four
multipliers were 14 bits. Next, the multiplier output of the
first and second register were added together using a 14-bit
adder and similarly, the 3rd multiplier output was added
with the output of the 4th multiplier using a 14-bit adder.
The outputs of both the 14-bit adders were added together
using another 14-bit adder. The output of this adder gave the
14-bit binary output which was the result of the BCD input.
This BCD to binary converter only took inputs from 0000 to
9999.

“000000” & “000000” & “000000” &
A_bcd B_bcd C._| bcd

“000000”
& D_bcd

C_bcd D_| bcd

_J _J

4 ,14

\ + /
4{;1 4
Output

Figure 3: Conversion Circuit Diagram

I11. EXPERIMENTAL SETUP

The functionality of the project was tested using
Vivado’s simulation software. The individual components
were tested separately to ensure individual accuracy. The
results from 14-bit multipliers were simulated with a variety
of 10 bit inputs, each of which were verified by their
decimal equivalent. The same was done for the 14-bit adder.

The next step is to test the functionality of all the
components (the combination of multipliers and adders)
together in the BCD to Binary converter. The expected
result would be the binary equivalent (14 bits) of a specified
BCD number input (16 bits). A test bench was created to
test the circuit designed for BCD to binary conversion (see
Figure 4).

A PS/2 keyboard was used as the external input.
Connected via usb to the FPGA board, this keyboard
transfers two pieces of information: the scan code of a
specific key, as well as a done signal, meaning the user has
released a key.

Reading all four decimal inputs correctly via the
keyboard needed to be verified via another testbench. For
this, a separate Vivado project was created with the
keyboard component and all its subcomponents removed.
This allowed the scan code and done signal to be manually
inputted as keyboard inputs. These were then provided to
the FSM and following components to ensure that following
keyboard inputs, the FSM can select the correct inputs. The
results of this testbench are shown in Figure 5.

IV. REsuLTS

The results of the full functional project with the
external PS/2 keyboard interface with the Nexys A7-100T
FPGA board can be seen in the below linked video.

https: h?v=[a4y-cSSTHK

One issue that was encountered dealt with receiving the
four keyboard inputs. As only four decimal numbers can be
inputted for conversion, a FSM needed to be used to capture
only the scan codes for the numbers that were pressed. An
error in the early FSM code allowed numbers to be inputted,
even if the user had not released the key. The done signal is
outputted by the keyboard component when the user
releases the selected key, only then can that specific key’s
scan code be captured.

This logic error was remedied by editing the FSM
program to check the done signal after every state, and only
then switching on the respective enables.

CONCLUSIONS

The mathematical converter contains four multipliers,
with one for each BCD input. The outputs from the four
multipliers are inputted into two adders (with each adder for
two of the multiplier outputs). A final adder was utilized to
add the outputs of the two adders, creating the final 14 bit
binary output.

Initially, the binary output was incorrect for BCD inputs
where the numbers were different from each other. After
determining that this, indeed, was a logic error, it was
confirmed the problem was in the FSM. After the addition
of a few simple statements in the existing FSM program
checking the done signal after every state, this problem was
remedied.

In the end, this project successfully converted a 16 bit
BCD input into its 14 bit binary representation. When given

a 4 digit input, the FPGA board displayed the corresponding
binary output as expected. Figure 6 shows the output on the
LEDs of the Nexys board when an input of “1245” is given
on the keyboard. The LEDs on the board show the correct
binary output, “10011011101.” Several other decimal inputs
were tested to make sure that the board consistently showed
the correct output.

Designing, simulating, and implementing our project led
to several major takeaways. One of which is the importance
of having a concrete understanding of the circuit before
starting the VHDL code. Not being completely sure of the
circuit before starting the code led to significant errors in the
code. Once, the top design was completely changed, and
that led to having to redo all of the VHDL code for the top
file.

Another important conclusion gathered was closely
checking the FSM logic when running into any logic errors.
There was a point when the mathematical conversion
between four BCD inputs was correct conditionally; to
check those other conditions was the key in determining the
error in the FSM program.

REFERENCES

[1] D.Llamocca, VHDL Coding for FPGAs [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDL forFPGAs.html

[2] [Accessed 20 November 2022].
[3] Lecture Notes - Unit 6
[4] Lecture Notes - Unit 7

https://www.youtube.com/watch?v=La4y-cSSTHk

65 ns 70 ns 75 ns 80 ns 85 ns 95 ns 100 ns 105 ns

¥ A_bcd[3:0] 0010
%' B_bcd[3:0] 1000

> ™ C_bed[3:0] 0
W D bed[3:0] 1000

™ Output[13:0] 00101011111000 00101011111000

Figure 4: Testbench for BCD to Binary Converter Block

Untitled 1%

Q W @ a I o I« + o

139,480 ns
100 ns 120 ns 140 ns 160 ns 180 ns 200 ns 220 ns 240 ns

% DOUT[7:0] 105

® Output([13:0] 111

8 clic_period 10000 ps
8 en0

denl

8 en2

0001
0001
0001
0001 — [eo0x
> ¥ G[7:0] 01101001 01110010 | oitot011
% q1[7:0] 01101001 01101011

¥ q2[7:0] 01101001 01101001 01101011

% 5

Enter

Figure 6: Results on FPGA board with Input “1245” on Keyboard

