4-Way Traffic Light Controller
ECE 2700, Fall 2022

List of Authors (Lionel Yousif, Amanpal Madahar, Nicholas Sinawi, Rana Kakooz)
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails:

lionelyousif@oakland.edu, amadahar@oakland.edu, nsinawi@oakland.edu,

rkakooz@oakland.edu

Abstract—A 4-way traffic light controller was
constructed through the Vivado software. It
was implemented through two Nexus A7 50T
FPGA trainer boards. The main portion of the
code was created using an FSM model with two
counters and six states within the FSM. The
counters were used to delay the time between
state changes, therefore adding a longer delay
when a traffic light is green and a shorter delay
when the light is either in the red or yellow
state. Once the VHDL code was tested, it was
then uploaded to the board and PMOD headers
were used to distribute the signals from the
boards to the LED’s on the breadboard.

I. INTRODUCTION

Traffic lights have improved much over the
past few decades to help with the increase in
vehicles and traffic all around the world. There are
an infinite number of possible traffic light designs,
whether it be sensor based or autonomous. The
motivation for this design was to try and recreate
an autonomous traffic light to see the
manufacturing process behind them. The design of
this traffic light controller is mainly architectural
based. It is designed to work as a continuous
traffic light controller that spans over four roads. It
was discovered that the code can be duplicated in
order to create a traffic light for the roads on the
north and south, and east and west. There was no
need to create a separate set of codes for the roads
that were opposite of each other. Also a blue light
is implemented into our design to constitute a
yellow left turn signal. This project tested the
skills learned in the labs and lectures within the
class. The use of FSM’s and counters shows the
usage of the skills learned in class. Errors were
then solved using the timing diagrams within the
Vivado software. When creating the external
components for the project, the group had to learn

new methods of distributing the LED signals from
the FPGA board to a breadboard with colored
LED’s. This design can be adjusted to real world
conditions by applying changes to the counters.
This will in turn allow for the design to be used
within bigger LED’s and a much larger traffic
light.

II. METHODOLOGY

A. Finite State Machine

The FSM was a great source to use when
coming up with the procedure and helped with the
layout for VHDL for the 4 way traffic light
controller. The FSM consists of six states each
containing its own set of the sequence. The
colored leds have an assigned binary number
shown in Figure 1 below.

Figure 1: Stlights design

STLIGHTS: OOOO OOO

AN

Lem ‘lc\\ovi Feen? Yolowd “red 2
AL Fent i

B. FSM

Starting with state one which will have all the
lights at red/red. We have two counters, one
counter is for five seconds the other for ten
seconds in order for the sequence to move on to
state 2 is if the counter has reached the time. The
timer will be reset for it to move on to the next
state and start counting up again according to the
next state. More detailed look on FSM in Figure 2.

Figure 2: FSM Diagram

Resetn=0

51

R/R

—-I StLights <=00001001

Scir five=0

52 R/G/L1
StLights <= 01001100
Elneﬂ =0
S3
R/Y
St Lights <=00001010
Efive=1
sS4 R/
St Lights <= 00001001
Efive=1
85 s/R

‘ St Lights <= 10100001

E ten =1 ’EIEEI

Efive=1

C. Pulse Generators
In order to create a delay between the traffic
lights, the group decided to use code for a pulse
generator. This code develops a pulse within the
system for the LED’s to turn off and on at specific
time intervals. A snippet of the code is shown
below in figure 1. This code was taken from
Professor Llamoca’s website and it was changed to
meet the requirements of our project. The code
uses an enable and sclr input and a z output. The
main part of the code that was changed was within
the snippet. The value that is put into COUNT is
what affects the delay between states. The value in
figure 3 is for the 0 to 5 second counter. So, in
order for the counter to increase the delay during
the green light state all that had to be done was
change the value from 5 to 10. Also, the values of
z and sclr were manipulated within the FSM to
allow the counter to reset the counters to their first
position so they can be used again within the next
states. Within this project, the value of enable in
both counters were set to 1 in the output process of
the FSM.
Figure 3
entity my genpulsefive is
generic (COUNT: INTEGER:= (S)%(10O%*E));
port [clock, resetn, E, sclr: in std logic;
Q0: out std logic vector
{ integer({ceil {log2 (real (COUNT)))) - 1 downto O);
zl: out std legic);
end my_genpulssfive;

D. Testbench

The testbench is very essential when designing
a project; it can help find errors within the code
and develop a timing diagram that can also be
used to solve errors. The testbench mainly takes
the values from the top file and produces a
diagram through the clock and reset inputs. Also,
the values for each output light at the first state
were placed into the testbench to begin the
process. The testbench helped to solve a few early
issues when determining which value in our
stlights output went to each of the traffic light
output values.

Figure 4: Circuit Diagram
4 way traffic light controller

CounterOto 5 Counter 0 to 10

& E
Scir
Sclr ten Scir
resetn resetn
zfivell I—F Zten
E ten

Scir five
E five Sinal
[Yel1

FSM

resetn

Grn2
cLK —l_l—v=|z
Red2
L iere

The circuit diagram shows the layout for
the 4 way traffic light controller in an easy to
follow layout from start to finish. Consisting of 2
counters that show what their inputs are and what
outputs are going into the FSM for the FSM to
cycle through its states and output the right
combinations of light.

III. EXPERIMENTAL SETUP

The software used for this project was Vivado
which utilized VHDL to synthesize and test the
experiment. More specifically, a test bench was
created to allow the experiment to be verified and
later implemented onto a FPGA. Two Nexus A7
50T FPGAs were used in this project and wired to
4 different breadboards, each consisting of 4
LEDs. Each breadboard represented a street light
with each LED symbolizing a color of the 4 street
lights: red, green, yellow, and blue for the turning
lane. To connect the LEDs of each breadboard to
the FPGAs, the PMOD component on the boards
were utilized in this case.

Figure 5: Pmod Headers
Data pins
P _!J\' =
s3vieno | 3 | 2 1110
s3viene| 7 1 6| 5 | 4

Each of the four LEDs were connected to data
pins 3, 2, 1, and 0. And the GND pin was used to
ground on each breadboard. The expected results
are 4 working traffic lights with proper delays
inserted to replicate a real life intersection.

IV. RESULTS

Upon completing the experiment the
results that we obtained were as expected. These
pictures will show the layout and the traffic lights
at work.

Figure 6: Final Project Design

The picture above shows a snippet of the
results that were expected. When one street has a
green light to go for both directions and blue light
is one for the left turns the street perpendicular is a
red light hence the whole experiment is running
accordingly. For the full demonstration of the
experiment this video link shows the entire
procedure, which includes a fairly busy
intersection and a loop of the 4 way traffic light
controller. Lights red and yellow have a duration
of 5 seconds while green and blue have a duration
of 10 seconds. The timing for the duration of these
lights is low for demonstration purposes but of
course when implementing in a real life scenario
times can be bumped up accordingly.

Figure 7: Timing Diagram

o resefn
4 clk

4 redi
18 red2
o yel1

o yel2

g gl
8 g2
d leftl

4 lefi2

4y

Figure 6 is a timing diagram that is a
behavioral simulation of a 4 way traffic light
controller. The simulation results were the most
crucial because that would verify if the traffic light
controller code is functioning correctly. The results
in the behavioral simulation were as expected all
throughout the simulation. Starting from state 1 as
we can see red 1 and red 2 are both value one
which means they are on. Continuing through the
states the correct outputs have the correct values
and time and no overlaps there for the timing
diagram is working properly and to expectation.

V. CONCLUSION

The construction of the 4-way traffic light
controller was successful in that it accurately
mimicked a typical traffic light cycle. However,
there are still many improvements that could be
made. Further adjustments could be made to the
counters to adjust the time between each state,
allowing for more customizable and efficient
traffic light cycles. Additionally, more complex
systems could be implemented such as 'smart
traffic lights' that detect traffic levels and adjust
the traffic light cycle accordingly. Finally, the
FSM model could be expanded to include more
states and counters to create even more complex
and customizable traffic light cycles.

REFERENCES

[1]D. Llamocca, VHDL coding for fpgas. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDL forFPGAs.htm
1. [Accessed: 04-Dec-2022].

