
Alarm Clock with Buzzer

List of Authors (Brendan Alkevicius, Trey Plichta, Samuel Bejko, Andrew McGhee)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: balkevicius@oakland.edu, treyplichta@oakland.edu, samuelbejko@oakland.edu, amcghee@oakland.edu

Abstract—ASM Implementation of an alarm clock with buzzer.
LUT utilization for time display. FSM implementation is
necessary for proper function of the system. Current state of
project design allows for minutes/seconds counter and alarm.

I. INTRODUCTION

This project's aim is to create an alarm clock using 8
separate 7 segment displays on an FPGA. The project
heavily relies on FSMs. The project also relies on
knowledge of full adders, decoders, encoders, priority
encoders, multiplexores, d flip flops, hex-to-7 segment
decoders, LUTs, and logic gates. The project includes a
self-drive piezo buzzer which will require the use of a
pinout pin on the FPGA board, which was not covered in
class. A piezo buzzer will be used to indicate when the
alarm goes off notifying the user. A single button will turn
off this buzzer or it will automatically deactivate after 5
minutes. A single button is used in addition to four switches
to set the time of the alarm and/or clock. The alarm clock
will be based around several FSMs. These are the Button
FSM, the FSM controlling the numbers in the 7-Segment
Display, the FSM controlling the buzzer output, and the
FSM controlling the stop buzzer button.

II. METHODOLOGY

A. Button Press
The algorithmic state machine diagram for the

mechanism of the button press that increments the clock or
the alarm time is as follows:

Figure 1. Button Finite State
Machine.

The FSM is divided into three
states: S1, S2, S3.
Once resetn is achieved the
value of ‘0’, the button’s state
will be S1 until it is pressed.
The value of the BTNC is then
checked. If the value of BTNC
is high, the state increases to
state 2. If the value is ‘0’ the
process will return to state 1.
The second state acts as a
debouncer for the button press.

Since btno is only desired to be high for one clock cycle,
it does not make sense to have btno equal to ‘1’ for the
entirety of S2. As mentioned, S2 again sets btno <= ‘0’
but instead if BTNC is ‘0’ the process will advance to
state 3, otherwise it will stay in state 2, until the button is
released. In S3, btno will now have a value ‘1’ since at
this stage the button will have been pressed and
subsequently released. At state 3, z (the output of the
onboard clock) is also checked to either keep the process
at state 3 or proceed back to state 1. The FSM outputs
btno to be ‘1’ for exactly one rising clock edge of the
onboard clock. This all allows the rest of the circuit to
function properly and only count once when BTNC is
pressed.

B. Demultiplexer with Enable
btno acts as the 1-bit output of the FSM “BTN”.

Based on the selector value, it picks the value of the
selected bit and assigns it to a specific output, as shown
below.

Figure 2. The Button Demultiplexor with Enable is
displayed.

The enable for the demultiplexor represents the single bit
z output of the priority encoder. The 2-bit output ‘encode’
acts as the selector for the demultiplexer. The priority
encoder utilizes the switch inputs as a selector for the
clock/alarm by being encoded and sent to the
aforementioned demultiplexer. The switches in the priority
encoder are utilized to switch which displayed value is to be
modified. The FPGA board’s eight 7-segment displays are
split up into 4 groups: alarm time hours, alarm time minutes,
clock time hours, and clock time minutes. Each switch
corresponds to a different group mentioned in prior on the
on-board 7-segment displays as seen in the de-multiplexor
with the priority going to the highest number switch that is
high. The button’s purpose is to simply increase that certain
value every time it is clicked.

C. Clock/Alarm Mechanism

Figure 3 shows the main mechanism for the clock time
and alarm time. The clock & alarm consists of four counters
of four different types; modulo-2 for the hour ten’s position,
modulo-12 for the hour one’s position, modulo-5 for the
minute ten’s position, and a BCD for the minute one’s
position . The one’s hour position had a specific issue. In
that specific spot the hour ten’s position has to count from 1
to 9 and then 0-2 before restarting. Additionally, this part of
the circuit had to somehow send a signal to the modulo-2
counter to restart on the count when the hour one’s position
reached 9 and when it reached 2. In order to achieve this
effect, an LUT and a 4-bit adder with constant inputs 0001
as x and 0 as cin were used with a counter. The LUT’s first
bit (MSB) was used as the messenger bit to the modulo-2
counter above it. The 4 other bits were used as the output for

the hour one’s position and were sent to the next part of the
circuit; the 7-segment serializer.

Figure 4. Cascaded 60 second counters

As it relates to the clock time, all of the counters clocks
run off of the FPGA onboard clock. However, the enables of
the counters are where the magic happens. Each enable is
driven by multiple sources. The enable signals are
controlled by a button press(release) and a counter. There is
a series of cascaded counters that has an output (z60) every
60 seconds, controlled by the FPGA board’s clock, shown in
Figure 4. The button press signals are btn_hr and btn_min in
figure 2. There is some added circuitry in order to get the
functionality of a clock. Beginning with the BCD counter,
an or gate is added that activates the counter either when the
user tells it to or when a 60-second counter reaches its
maximum value. For the modulo-5 counter, the 60-second
signal (z60) is anded with the z output of the BCD counter.
This allows the modulo-5 counter to increment when both
z60 is high and the BCD counter hits its maximum value.
The multiplexor is added in with a select line that is
controlled by a button press(release). This allows the
modulo-5 counter to only look at the BCD counters z-output
as its enable for one clock cycle after a button press with the
switches set to control the clock time’s minutes. The
modulo-12 and modulo-2 counters are grouped together in a

similar fashion with similar components. However, more
and gates are used to look at the z outputs of the other
counters.

As it relates to the alarm time, the clocks of the counters
are once again run off the FPGA onboard clock. However,
the enables of the counters are controlled purely by the
button mechanism described prior. The button press signals
for the alarm are btna_hr and btna_min in figure 3. Since the
modulo-2 and the modulo-12 counter are grouped together,
the button press signal is sent through an and gate with the
other input being a one bit output from the LUT to tell the
modulo-2 counter to activate and increment on the next
clock tick. Since the modulo-5 and the BCD counter are
grouped together, the button press signal is sent through an
and gate with the other input being the z output from BCD
counter to tell the modulo-5 counter to activate and
increment on the next clock tick.

D. Full 7 Segment Display

In figure 5, the FSM and attached components are used to
show all of the signals on separate 7-segment displays to the
human eye simultaneously by cycling through every
1ms(0.5ms may be necessary). The state diagram for the
aforementioned FSM is shown in figure 6. The FSM
increases its state every time E is 1, which as the diagram
shows, will occur every 0.001s (1ms). Hence, ‘s’ will
increase every 1ms, thus switching what data value to fetch
from the multiplexor each millisecond. The ‘s’ selector also
selects which 7-segment display to turn on at a given
moment since only one display can be utilized at a time
because of hardware limitations. Hence why the 1ms delay
is present to let the board switch displays constantly so it is
only utilizing one display at a time while simultaneously
seeming as though the image is still to the human eye thanks
to the low delay.

Figure 5. Clock/Alarm mechanism outputs through
decoder to 7-Segment display. MUX, Counter, FSM, and 3-8
Decoder.

Figure 6. State diagram for FSM.

E. Buzzer Circuit

Figure 7. Detailed buzzer circuit is shown.

For the buzzer circuit, two FSMs were used to
control the buzzer functionality. The Buzzer Main FSM was
utilized to determine whether the buzzer should go off based
on the inputs. These inputs are a comparator, btnOff, and
z5min as shown in the following figure.

Figure 8. Buzzer Main FSM

The output EN5min, that will make the buzzer go off for
up to 5 minutes, then acts as the enable for the
2-billion-modulo counter when compared in an or gate with
z5min. The two cascading counters are present to bypass the
hardware limitations values for a singular counter, allowing
the counter to reach far higher values by chaining them in
such a way. For context, the modulo 2-billion counter,
counts up to 20 seconds, and the modulo-15 counter allows

for the repetition of that 20 second period for a total of 15
instances for a total of 300 seconds, or 5 minutes. The
z5min signal is connected in an or gate to the input to ensure
that the sclr signal from the buzzer control FSM resets the
counters to 0 before the next cycle.

Another output of the Buzzer Main FSM is ENWav,
which is responsible for being the enable of a modulo-25k
counter that sends out a zWave signal as a signal for the
Buzzer Wave FSM pictured below. The modulo-25k
corresponds to a 4kHz, 10 ns pulse which equates to a 2kHz
full square wave which generates the audible buzzer tone.

Figure 9. Buzzer Wave FSM

This simple FSM relies on both ENWav, the enable for the
modulo-25k counter, as well as zWave, the output of said
counter, to have a value of ‘1’ in order to generate the 2kHz
frequency waveform in the second state. If zWave is then
again triggered, the wave generation will stop.

III. EXPERIMENTAL SETUP

To attempt to implement this alarm clock an Artix-7
FPGA was used. The software used to implement the design
was Vivado VHDL by Xilinx. The configuration uses
various components including everything mentioned above.
The expected results for the first test was a working clock
with a 7-segment display being able to count at a base of 1
minute increments. In addition to that, switches and button
presses in order to increment the minutes and hours section
of both the alarm and the clock. For the implementation of
the buzzer, an HF-12095, was utilized and connected to the
pinout of the Artix-7 board.

IV. RESULTS

Figure 10. Buzzer Circuit waveform and internal signals
display the functioning system.

The various FSMs were of great importance in
successfully implementing the various counters needed for
this project especially when dealing with clocks. All the
FSMs in the main clock circuit, time adjustment button
circuit and datapath circuitries functioned as expected and
no major flaws surfaced.

Figure 8 shows the simulation of the comparator and
buzzer circuit. The values of the counter to turn off the
alarm were scaled to be active in this shorter window, as
well as the actual waveform used for the buzzer. However
the simulation shown accurately portrays the use of “z5min”
to send a signal to the control FSM to switch to the off state
when it reaches a logic high.

Some issues encountered during the testing process were
noted and adequately addressed. One such issue was the
problematic size of one of the counters. The 60-second
counter reached bit numbers that were higher than what the
FPGA hardware could handle (31 bits, 231), therefore 2
counters had to be cascaded in addition to a d flip flop and
an and gate to create a counter that lasted for the correct
duration.

Another issue that was encountered was due to the
comparator comparing only the minute and hour values.
This meant that the comparator value would stay high for a
minute, or until the two values were no longer the same,
preventing the alarm from being shut off within the first
minute of activation. This was resolved using an added state
to an FSM to prevent the alarm from sounding once the turn
off button was pressed during the same minute the alarm
started. This could have been fixed by incrementing an
internal counter in the seconds place and using that to make
the two compared values 24 bit rather than the 16 bit integer
that’s currently being used to set off the alarm.

The project required the use of LUTs in order to
successfully implement a properly functioning ones digit for
the hour in both the alarm and clock. Due to the nature of
the ones place, it would need to count differently than a
typical modulo counter, so a 4-5 LUT was used in order to
properly increment the value.

Video Demonstration

CONCLUSIONS

This project introduced us to a deeper understanding of
VHDL code and the design and implementation of digital
systems. We worked with and expanded our knowledge on
the pinout of the Artix 7 100T, which was not discussed in
class. Our project ended in a completely functional state, but
further improvements could be made. A snooze
functionality was not implemented, but if more time was
available, it would have been next on our list. This would
add 5 more minutes to the set alarm time while also
triggering the stop alarm state in the FSM. Additionally,
there are some small simplifications or improvements that
could be made. Our comparator is more complicated than it
needed to be. Rather than folding down the output of the
xnor gate, the output could have been put into a 16 input and
gate, which would have the same functionality while only
using one gate. Through this project, the group gained
knowledge and hands-on experience with the design of a
digital system that dove deeper than what the labs in the
course provided. Knowledge from the labs built an
understanding of how systems work, and this was used to
create this alarm clock. The group is happy with where the
project ended, and look forward to advancing our
knowledge in FPGAs and their applications.

References
[1] Reconfigurable Computing Research Laboratory. (n.d.). Retrieved

November 15, 2022, from
http://www.secs.oakland.edu/~llamocca/index.html

https://youtu.be/yIiSeHjGgds
http://www.secs.oakland.edu/~llamocca/index.html

