
Matrix Multiplication
The architecture of 3x3 Matrix Multiplication for unsigned numbers.

List of Authors (Genbela Lifo, Nour Alnounou, Maryam Yaqo, Maryam Zadoyan)
Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: lifo@oakland.edu, nalnounou@oakland.edu, maryamyaqo@oakland.edu, maryamzadoyan@oakland.edu

Abstract- The purpose of this project was to

implement the architecture of a three-by-three

multiplexer for unsigned numbers through

VHDL. This design only utilizes the Nexys

A7-100T board and a regular Keyboard. This

project requested different coding techniques to

complete the architecture of the circuit.

I. INTRODUCTION

The goal of this VHDL project is to

create and implement a synthesizable matrix

multiplier that can calculate 3x3 matrices in size.

The report outline shows the strategy of the

architectural design, the implementation, and the

ultimate outcomes. The architecture of the

matrix multiplexer was implemented via VHDL

in the Xilinx Vivado Design. We used an

external keyboard as the system's input, which is

connected through a USB port to the Nexys

A7-100T board. The board was programmed to

turn the 8-bit input from the keyboard into a

4-bit input to complete the 3x3. After the signal

goes through the matrix process it is converted

from Hex to a 7-segment decoder which after

will display the results on the FPGA board.

II. METHODOLOGY

The purpose of this project is to be able

to give an input that goes through the

architecture of the 3x3 matrix multiplicator in

order to display the same number as the input

but into the 7-segment display in the Nexys

A7-100T board. The methodology of this project

consists of the matrix multiplication, block

diagram, state diagram, and implementation of

FPGA, where all of these parts and the inner

steps will complete the structure of the 3x3

matrix multiplication architecture.

A. MATRIX MULTIPLICATION

The matrix multiplication needed for

this project follows the same steps as a normal

math matrix multiplication but in this case,

signals are replacing the numbers. Being able to

multiply matrices is essential for comprehending

how to use the circuit's various parts. The first

rule is that the first matrix's columns must have

the same number of rows as the second matrix's

rows in order for matrices to be multiplied. This

project focuses on 3x3 matrix multiplication, the

example of this matrix using the letter

component is shown in Figure 1[2].

Figure 1: Matrix Multiplication

B. STATE DIAGRAM

This is our Finite state machine. First

We start with the first state and after we get the

data from the keyboard we will receive this

done. The first enable for the decoder will be

one and the address will be zero (five bits), but

the enable for the D-flip flop will be one and the

done will be zero. It is zero because the data is

not ready yet. Then it will go to the second state

and we will get one for the enabled decoder and

one for the address. From state two we will go to

state three and get one for the enabled decoder

and the address will be one. From state three it

will go to the fourth state. We will get one for

the enabled decoder and two for the address.

Then it will go to the fifth state and we will get

the enable decoder to be one and the address will

be three. From this state, we will go to the sixth

state and will get one for the enabled decoder

and four for the address. Then we will go to the

next stage which is the seventh state and will get

one for the enabled decoder and five for the

address. From the seventh state, we will go to

the eighth state and will get one for the enabled

decoder and six for the address. Next, we will go

to the ninth state and will get one for the enabled

decoder and seven for the address. From state

nine we will go to the tenth state and will get

one for the enabled decoder and eight for the

address. Then we will go to the eleventh state

and will get one for the enabled decoder and

nine for the address. From the eleventh state, we

will go to the twelfth state and will get one for

the enabled decoder and ten for the address.

From that state, we will go to the thirteenth state

and get one for the enabled decoder and eleven

for the address. From that state, we will go to the

fourteenth state. We will get one for the decoder

and twelve for the address. From that state, we

will go to state fifteen and will get one for the

enabled decoder and thirteen for the address.

From state fifteen we will go to state sixteen and

will get one for the enabled decoder and

fourteen for the address. From state sixteen we

will go to state seventeenth and get one for the

enabled decoder and fifteen for the address.

From state seventeen we will go to state

eighteen and get one for the to enable and

sixteen for the address. From state eighteen we

will go to the last state which is state nineteen.

We will get one for the enabled D-flip flop and

will get one for the done which means the data is

ready now. In the end, we will go back to the

first state.

Figure 2: FSM Diagram

C. CIRCUIT DESIGN

The picture below shows the complete circuit for

this project. It is quite a complicated circuit that

requires many components like two Decoders, a

Register, Multipliers, Muxes, FSM, and more.

Figure 3: Circuit Diagram

The first part of the circuit starts with the

keyboard which provides the input. The data

will move to the first decoder which uses axi

code to convert the data to 4 bits. This data will

be stored in the registers. After Done is received

from the keyboard the FSM will make sure that

the right data will be represented. So it will

display the results one by one and this is stored

in the second decoder and from the decoder to

the register. After this entire process is done the

d flip flop will turn the LED on to show that the

data is received. There are a total of 18 elements

stored in the register, 9 per each matrix and all of

them are 4 bits each. After the matrix

multiplication is complete now each element

will be 8-bit. This data now will be entering the

Mux which controls the output we see from the

matrix multiplication using switches. The last

part of the circuit is the serializer [1] which

includes the necessary components that the

board knows to output the results in the two

7-segment displays.

III. EXPERIMENTAL SETUP

We worked in the Vivado VHDL programming

environment to build the code as well as

simulated it in order to make sure that all the

components of the circuit were working as

expected. Separate source files were created for

each component and later on combined on the

top file to complete all the necessary

connections between components.

Figure 4: Simulation

IV. RESULTS

Overall the board functioned as desired and the

right results were displayed. The keyboard was

able to provide the inputs and the LED turned on

after all the data was received and later saved in

the register. Very quickly as expected the

7-segment display showed the right results after

the switches selected which element of the

results to display.

CONCLUSIONS

This was a successful project. We were able to

complete all the basic requirements. As in every

case, there is always room for improvement or

challenging steps that can be added to the

project for example the ability to work with

signed numbers or improving the concept of the

project so the user doesn’t need to choose which

displays they want to see by using the witches

on the board but maybe the keyboard as well.

The options are endless but overall this project

was challenging and it showed vicarious results.

REFERENCES

‌[1] D.Llamocca’s Unit 7 serializer example

project.

https://moodle.oakland.edu/pluginfile.php/784

6520/mod_resource/content/17/Notes%20-%2

0Unit%207.pdf

[2] Threads: Basic Theory and Libraries. (n.d.).

Retrieved December 4, 2022, from

users.cs.cf.ac.uk website:

https://users.cs.cf.ac.uk/Dave.Marshall/C/node

29.html

[3] Laxman, S., et al. "FPGA implementation of

different multiplier architectures." International

Journal of Emerging Technology and Advanced

Engineering 2.6 (2012): 292-295.

[4] Bhairannawar, Satish S., et al. "Efficient

FPGA Based Matrix Multiplication Using Mux

and Vedic Multiplier." International Journal of

Computers and technology 12.5 (2014).

