Digital Motion Alarm

Final Project Report

List of Authors (Josh Viar, Donovan Deza, Lewis Kowalec)
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, M1
E-mails: jviar@oakland.edu, donovandeza@oakland.edu, lkowalec@oakland.edu

Abstract— In this project, students utilize
skills learned in ECE 2700 Digital Logic
Design and classes previous to design a
digital system using an FPGA and Vivado to
code VHDL. For this the students chose to
design a digital alarm system that will sound
when a motion sensor is triggered and can
be disarmed with a four switch
combinational code. The main purpose of
this project is to be able to deter intruders.
Many discoveries and further
recommendations were found through the
process of making this digital system.

I. Introduction

This digital motion alarm system
will require different electrical components
as well as hardware programming. This
project will use a Nexys A7 100T FPGA, an
Arduino Uno used as a 5V power source and
as an amplifier for the buzzer, an HC-SR501
PIR (Passive Infrared) motion sensor
module to detect if there is motion within an
area, an LED, an active buzzer, a mini
breadboard, and jumper wires. The
programming will be done in Vivado VHDL
2021.1, as well in Arduino IDE. The
motivation for making this project is to

better understand and be able to replicate
how alarm systems work. Another
motivation is being able to know if there is
an intruder or someone present within a
room for security reasons with the hope that
a buzzer will be able to deter them before
they steal belongings.

This project can help to make areas
more secure and safe by having an alarm
sound if motion is detected in an area where
intruders are not wanted. This project covers
many areas that students have learned in this
class so far. One needs to know how certain
components work in order for them to be
able to implement them into the code. It is
crucial that students not only understand
how to code components in VHDL using
Vivado, but it is just as important for them to
be able to know how to interconnect these
components using a top file and to be able to
write a proper testbench to simulate his or
her code.

The skills necessary to be able to do
these tasks were taught extensively in the
course and were utilized heavily during this
project. Important parts that were coded in
Vivado that were taught in the class are
counters, decoders and finite state machines.
The students needed to learn a few things on
their own however, to actually pull off this
project. Students needed to look through the

mailto:lkowalec@oakland.edu

provided manual for the Nexys FPGA to
find what the I/O pins on the FPGA were
named so as to be able to find them in the
.xdc constraints file. A challenge of this
project is learning how to use a PIR sensor,
how to feed voltage to the FPGA properly
without damaging the board, and how to
feed voltage from the FPGA board to a
buzzer. It is also important that students
have a solid understanding of how to use
Arduino IDE and how to wire basic circuits.
The applications of this project can be
utilized in any situation where a motion
sensor alarm is needed.

I1. Methodology

A. PIR sensor and FPGA

This project working properly relies
heavily on the use of an HC-SR501 PIR
motion sensor module. The main challenge
being that the FPGA board must be able to
read data coming from the motion sensor,
process that data and output a signal strong
enough to power an active buzzer. The
motion sensor and active buzzer being used
as components to make the system work
requires at least 5V, which students will
generate from an Arduino Uno board. Since
the FPGA cannot output 5V it will send its
output signal to the Arduino where it will be
amplified to 5V before being sent to the
active buzzer.

Other challenges being faced during
the setup and implementation of all
components include the fact that the sensor
requires 30-60 seconds of time after being
powered on to be able to give an accurate
reading to the FPGA board. This is due to
the PIR sensor needing time to acclimate

itself to the infrared energy in any given
room. After initially powering the system
on, this should not be too much of an issue,
due to the always-on nature of the home
security alarm systems. Another challenge
given by the PIR sensor is the sensitivity of
the range that it will read. The specific
sensor used in this system gives a range of
three to seven meters, with the topology of
the given room potentially affecting the
sensor (furniture, obstacles, etc). For
demonstration purposes, the PIR sensor was
placed in a controlled environment using a
box in order to simulate an empty room.

After detection of a moving object
by the sensor, it should output a 3.3V logic
HIGH into the FPGA although this was
measured using a voltmeter to be around
2.56V. This signal is then sent to the FPGA
where it is read as either a HIGH or LOW
signal. For the FPGA, voltage signals being
input should not be above 3.8V, but should
be atleast 3.3V, although the signal voltage
from the PIR sensor is only 2.56V it turned
out to actually be enough for the FPGA to
read it as high. This output voltage is also
connected to a blue LED, which indicates
when motion is detected by the sensor.

The minimum amount of time that the
sensor will output a logic HIGH signal will
be three seconds, with the maximum time
being 300 seconds, or 5 minutes. This is due
to the default specifications of the
HC-SR501 PIR motion sensor and has a
manual knob to adjust this, which was
adjusted to 3 seconds.

The final feature of the digital alarm
system project is a combinational four
switch code which disables or enables the
alarm. Using four switches on the Nexys

A7-100T FPGA board, a default
combination will be set using SW3-SWO0,
such that when the right combination is
enabled, the alarm will disable itself, and the
sensor will wait before triggering again
when it detects motion in the room. For
ease-of-use purposes, the default
combination will be set to ‘1111’ to be used
as the disable code. It is expected that this
specific combination of switches will
disable the alarm and turn off all active
components with the exception of the PIR
motion sensor. All other combinations of
switches will not disable the alarm, but will
keep it enabled.

B. Finite State Machine

The main inputs to the FSM consist
of input ‘X’, which is the signal from the
PIR motion sensor, input ‘resetfsm’, which
will reset the entire circuit if activated, the
clock input, and the 4-bit input ‘C’, which
will serve as the combination for arming and
disarming the alarm system.

The main output coming from the
FSM is °Y’, which will be sent to the
Arduino UNO to amplify the voltage, and
then to the active buzzer, effectively
sounding the alarm.

C. Other Combinational Circuits Used

The circuit contains multiple other
components, such as two counters and a
decoder, which will control the seven
segment display to display a count from 0 to
2, giving the user time to put in the
disengage code if a false alarm is triggered.
The first counter in the circuit will count to
10*10® nanoseconds (1 second), due to the
nature of the FPGA’s internal clock which

cycles every 10 nanoseconds. The first
counter will effectively delay the second
BCD Counter, so that it will count once
every second from 0 to 2 seconds. Once the
second counter has reached two seconds, an
output of ‘Z’ will display logic HIGH, and
will be fed back into the FSM, and a high
signal output “y” will activate the buzzer.
The count from the second BCD counter
will be shown on the seven segment display,
giving the user a visual indication of the
time remaining before the alarm will sound.

D. Combinational Code Reset

As a safety measure for the system,
if the input C=C,C,C,C, is set to the value
‘1111°, the alarm will not sound, regardless
of if motion is detected by the PIR Sensor.
However, if the alarm is triggered and input
C is set to any combination besides ‘1111°,
the alarm will continue to sound until the
correct combination of inputs is entered into
the FPGA, or the manual ‘resetfsm’ button
is pressed. Note that the unit would have a
cover and the manual resetfsm button would
not be accessible to intruders.

For more information regarding the
circuit and its internal components, a block
diagram is provided below as well as an
ASM Diagram of the states included in the
finite state machine and their purposes.

reset fsm

(PIR Sensor input JC) JD pin 1" Arduino
X - N Y 3.3V [~ Buzzer Active
4 ESM resetn (J)
c 7
(switches 0-3) E E
3
Signal (e_0) Counter zZ
1 Second
> Signal (Z_0)
clock G@
b
9
BCD Counter >
(Counts to 2) AN
c
E d op
z (a—gyel
a <]
2.
(signal Q_0) 7./
Decoder
(SevSeg)
E R
Block Diagram of Circuit
Resetfsm
S0 50: No sound Buzzer is off
[resetne1 Alarm is disengaged and/or no J‘ ¥
motion is detected - H
| T
ks 00
“1111" ROVINO
[
T Whatisthe code “C"?
111" €= Cy0,00,
0 T -Whatis X? s motion detected
X="1if yes 2 [
51 o1 X="0ifno -
resetné-1 T st Allcounters are reset § = 0......0"
v = L
11" C Is the code ‘11117 Is the alarm disengaged?
52
52: Counter for 1 second is enabled
-Counters count
Ground
Is Alarm disengaged during counting —
“1111" v
—
PIR Sensor Signal
0 .
FSM Output “y”
—
s 2 second counter at 2 seconds yet? .
if yes thenz =1 0V/5V (Amplified
if no thenz = 0")
53: Buzzer s sounding until correct code is put in —
€ =" 1111" is the correct code
“1111" C
Y Whatisthe code? What is C?
Circuit wiring

ASM Diagram for the FSM

III. Experimental Setup

The following hardware was used in
the setup of this experiment: a Nexys
A7-100T board, a HC-SR501 Passive
Infrared Sensor, an Arduino UNO board
used as a voltage source and amplifier for
the output voltage, a single LED, an active
buzzer used as the alarm, a mini breadboard,
jumper wires to connect the circuit, a
voltmeter for checking voltages before
wiring, and Vivado behavioral simulations
using a written testbench file to cycle
through the states.

First and foremost, a testbench
simulation file was created in Vivado to
cycle through the states of the FSM and to
see if it was working properly. After a
successful simulation, a voltmeter was used
to see what the voltage coming from the PIR
sensor was in order to determine if it would
be safe to input into the FPGA. Information
on the exact PIR sensor said it would output
a 3.3V signal if motion was detected, but
using a voltmeter this signal was checked
and it came out to be 2.56V. Since this was
still below the maximum 3.8V, it was
connected to the FPGA knowing this
wouldn't damage the unit. The Arduino had
a simple code that said if the input from the
FPGA was HIGH then to set its output pin
which was connected to the active buzzer
equal to a pin on the Arduino being fed a
voltage of 5V. This simply set the output pin
being fed to the buzzer to 5V whenever the
FPGA sent out a HIGH signal (this voltage
was also checked with a voltmeter and was
read as 5V to ensure the buzzer was being
powered properly).

After all of this, the circuit was built
and the digital system demoed to see if
things would work properly and they did, so
it was a success.

The expected result of the
experiment is once the PIR sensor detects
motion and the combinational code is
anything other than ‘1111°, a two second
counter will restart and count from zero to
two seconds, giving the user time to
disengage the alarm. If the combinational
code is anything other than ‘1111” and the
‘resetfsm’ button has not been pressed, the
active buzzer will sound after two seconds.
The active buzzer will continue sounding
until ‘1111” is entered into SW3-SWO on the
FPGA board or if ‘resetfsm’ has been
pressed (again this is not accessible once a
cover is put over the unit as would be if it
were utilized in the real world). Once the
correct combination code ‘1111 has been
entered into SW3-SWO or ‘resetfsm’ has
been pressed the buzzer will stop sounding.

IV. Results

The results obtained were in line
with what was expected, such that once the
PIR sensor had detected motion and the
combinational code was anything other than
‘1111°, the LED lit up for roughly 3 seconds
and the counters successfully reset and
began counting from zero to two seconds,
which was displayed on the seven segment
display and if the alarm was not disengaged
by putting in the right combinational code—
‘1111° —across the first four switches on the
FPGA board, before the 2 second BCD
counter had finished its count, the active
buzzer began to sound and continued to

buzz until ‘1111° was entered into the
switches 3-0 on the FPGA board or if the
‘resetfsm’ button was pressed (again a cover
was utilized during demonstration in class).
The PIR sensor also successfully outputted a
3.3V (2.56V) logic HIGH signal whenever
motion was detected and the FPGA was also
successfully able to send a logic HIGH
signal to the Arduino UNO board for
amplification to 5V and sound the buzzer
after the count.

V. Conclusion

This project serves as a way to put
many topics students learned throughout the
semester all into one, in order to create an
external interfaced based digital system with
the purpose of improving home security.

Through experimentation and trial
and error, this system can be improved upon
in multiple different ways, including but not
limited to having multiple motion sensors in
many rooms throughout a house and/or
sounding multiple alarms to be heard
throughout the house or dwelling. Also, it
may be helpful to have a combinational code
that is changeable in the case that the code is
compromised. This could be implemented
using a design similar to lab 5 where a
Random Access Memory could be used to
hold a code that is written by the user and
then that code would be stored and used as
the enable/disable code. The reason this
wasn't implemented is it would be easy for
the intruder to then reset the code himself.
However, this could be used if another FSM
was implemented to see if the current code
was input and then would enable the
rewriting of the code.

With more time this would have
been a cool feature to include in the project.
However, the overall objective of this
project was a success. The students applied
many different topics learned throughout the
ECE 2700 course to create an effective
security alarm using students’ knowledge of
VHDL and digital logic circuits. These goals
were achieved through collaboration of
teammates, trial, error, and knowledge of
digital systems and VHDL coding. The
overall result led to the successful
completion of a digital alarm system by the
group of students.

Video Demonstration of Circuit

References

[1] Last Minute Engineers. (2020,
December 18). How HC-SR501 pir sensor
works & how to interface it with Arduino.
Last Minute Engineers. Retrieved December
11,2021, from
https://lastminuteengineers.com/pir-sensor-a
rduino-tutorial/.

[2] Nexys A7 Reference Manual - Oakland
University. (n.d.). Retrieved December 11,
2021, from
http://www.secs.oakland.edu/~llamocca/Cou
rses/ECE2700/Boards/NexysA7 rm.pdf.

[3] VHDL coding for fpgas. (n.d.).
Retrieved December 11, 2021, from

http://www.secs.oakland.edu/~llamocca/VH
DLforFPGAs.html.

[4] Arduino Uno REV3. Arduino Online
Shop. (n.d.). Retrieved December 11, 2021,
from
https://store-usa.arduino.cc/products/arduino
-uno-rev3/.

https://youtu.be/8X0kUgdJ5CU

