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Abstract— Stopwatch is a digital system of counting to account 
for time took for an event. It is widely used in sports and 
laboratories. The stopwatch works by pressing a button to start 
and stop or simply turning the count on and off. The count can 
then be re-started or continued. The saved time of the interval 
can be very precise and accurate depending on the design of the 
stopwatch. Some digital stopwatches can save more than an 
interval of time. The digital stopwatch here is implemented 
using VHDL in Vivado and coded on a Nexys Artix-7 FPGA. 
This design of the stopwatch includes 6 7-segment displays and 
a couple of buttons and switches to control it. The design has 
been tested and simulated to account for all scenarios and it 
mainly came down to controlling the displays through a finite 
state machine and connecting different types of counters 
together to show 6 digits going from 00:00.00 to 59:59.99 and 
repeating.  

I. INTRODUCTION 

This report will cover the design methodology for a digital 
stopwatch along with a description of the experimental 

setup used to verify the functioning of the project and the 
results of this verification testing. A functional digital 

stopwatch has become a staple of modern life. Stopwatch 
capabilities are a feature that is simply expected in every 

wristwatch and smartphone in today’s market, making the 
implementation of this technology a necessary skill. This 

project will utilize a variety of skills learned throughout this 
course, including the use of synchronous and asynchronous 

circuit elements, 7-segment display serialization, clock 
signal modulation, and memory storage and recall. 

 
 

II. METHODOLOGY 

A. Counting Execution 

 
The goal of this portion of the system is to produce six 

signals, each of which will accurately reflect a digit of the 
time elapsed since the start switch was activated. This goal 
was achieved by directly adapting the stopwatch example 
provided in the VHDL Unit 7 slides on the course website [1] 
to function for 6 digits with the two most significant digits 
representing minutes, the next two most significant 
representing seconds, and the two least significant 
representing tenths of seconds and hundredths of seconds 
respectively. The primary difference between our design and 
the lecture example referenced above is the addition of 

another modulo-6 counter and BCD counter to the left of the 
existing modulo-6 counter.  These modulo-n counters were 
made by generic mapping the file “my_genpulse_sclr” from 
the course website to suit our needs and the BCD counters 
were created from “mybcd_udcount” from the same website 
[1]. 

 
Below is an image of the lecture stopwatch design 

referenced previously, followed by the modified design. Both 
designs consist of three input signals (clock, pause, and 
resetn), and in both designs all three inputs serve the same 
purpose. The clock signal serves two purposes: to 
synchronize all of the counters as well as to provide a “base 
unit” for the counting functionality. The resetn signal resets 
all the counters when it goes “low”, and the pause signal 
begins or resumes counting when it goes “low” and pauses 
when it goes “high”.   
 

The counting is implemented first by feeding the clock 
signal into a modulo-1,000,000 counter. Since the clock ticks 
every 10ns, the result is a “high” z output from the modulo-
1,000,000 counter every 0.01 seconds. This z signal (Z0) is 
then fed directly into the first BCD counter of the array. This 
BCD counter will have a Q output (Q1) and a Z output (Z1). 
This will result in Q incrementing every 0.01 second (“0001”, 
“0010”, “0011”…) until reaching a maximum value of 
“1001” at which point it starts over. The signal Z1 will go 
“high” every time that Q1 reaches “1001”. Signal Z1 is then 
fed into an AND gate along with signal Z0 and the output of 
this AND gate (E1) is fed to the “enable” input of the next 
BCD counter.  This process is continued for the entire array 
of counters, the AND gate feeding each counter’s enable fed 
by the Z output of the previous two counters. 

 
 
 

 
Fig 1. Counting Implementation from Lecture 

 
 

mailto:austinnguyen@oakland.edu


 

 
 
 

 
 

Fig 2. Extended Counting Implementation 
 

B. Lap Memory Storage and Recall 

 

The goal of the Lap Memory Storage and Recall 

section of this system is to be able to record and store the 

values of time at a specific point without interrupting the 

stopwatch Counting Execution and be able to display the 

recorded lap time on the seven segment displays also 

without interrupting the stopwatch. To do this, 6 4-bit 

registers are implemented into the design. The 4-bit registers 

will receive its input signal from the output of the BCD 

counters and the Modulo-6 counters from the Counting 

Execution portion of the system. The ‘Enable’ of these 

registers will receive its signal from a button on the FPGA 

board, this will act as the “Lap button.” With this set up, 

whenever the ‘Enable’ receives an active high signal (button 

is pushed) the output from the BCD/modulo counters at that 

point in time is stored into the registers. This completes the 

Lap Memory Storage function.  

 
Fig 3. Lap Memory Storage Registers  

 

Now that the Lap time is stored, the user of the 

stopwatch needs to be able to display the recorded time. 

This is done through the implementation of a 6-to-1 

Multiplexor and a 2-to-1 Multiplexor. The 6-to-1 

Multiplexor is used to separate and organize the 6 stored 

values and place them into their proper place value as a unit 

of time (the display portion of this report will explain this 

further). Next, a 2-to-1 Multiplexor is used to decide 

between displaying the current stopwatch count or the 

stored Lap time. This Multiplexor will receive 3 inputs: one 

from the 6-to-1 MUX connected to the Counting Execution 

portion, one from the 6-to-1 MUX connected to the Lap 

Memory Storage portion and one from a switch on the 

FPGA board. The switch from the FPGA board will decide 

whether the 2-to-1 MUX sends an output of the current time 

or the lap time. Therefore, this switch will be capable of 

choosing which signal is displayed.  The multiplexors were 

made by modifying “my_busmux4to1” and the registers 

were implemented using “my_rege” from the course website 

[1]. 

 

 
Fig 4. MUXs 



 

 

C. Display 

To display the 6 digits of the count of the stopwatch, 6 of the 
8 7-segement displays were used of the Nexys board, 
however, it is not as simple as connecting the output of the 
counters to the displays. These 7-segment displays are all fed 
through the same signal, meaning a one counter output signal 
‘Q’ will be displayed on all the displays at once. This is not 
what this design should accomplish. A solution to this is using 
a multiplexer, 6-to-1 specifically, to control which counter’s 
output signal to display on the correct 7-segment display by 
turning all 7-segment displays off except for the right place 
for the digit of this counter. To control this operation, a finite 
state machine is used to alternate between the signals of the 
counters and the correct display for each one. For 6 displays, 
the state machine will have 6 states each stepping into the next 
state if E is “high”, which is the Z output signal from a 1 
millisecond counter to have a 1 millisecond show time for 
each display. It will also have a resetn to go back to state 1 in 
the case of restarting. The output of the state machine will be 
a 3-bit, S, that will go in as the select signal of the multiplexer 
and the input for a 3-to-8 decoder to convert these 3-bit into 
an 8-bit signal with “low” bits except for the right place of the 
displays that will be display the counter digit. This operation 
is called 7-segment serialization. Below is the Algorithmic 
State Machine shown.  The decoder, modulo-n counter, and 
state machine where created by modifying provided files from 
the course website [1]. 

  
Fig 5. ASM 

III. EXPERIMENTAL SETUP 

 
       The functioning of most features (stop/start, lap 

write/read, resetn) for this project were verified directly by 
loading the project onto the board and testing the features. 
However, observing the behavior of the state machine as 
well as the correct execution counting a behavioral 
simulation is especially useful. There is, however, a 
problem with simulating this design directly; namely the 
timing of the circuit must be scaled down. The simulation 
below was generated using a clock with a period scaled 
down to 1ns from 10ns. Also, the modulo-1,000,000 
counter was scaled down to a modulo-10 counter and the 
modulo-100,000 counter was scaled down to a modulo-1 
counter.  
 
 
 

IV. RESULTS 

In order to verify the counting functionality, we will take 
note of the simulation output of the Q outputs of the counters.  
For the sake of time, we will focus here on the two least 
significant digits. Please note, these simulation expectations 



 

are utilizing the “scaled down” circuit mentioned in section 
III.  The expected effect is that every 10ns the count of the 
first counter of the array will increment by 1 varying from 
“0000” to “1001” and repeat.  Similarly, since the first 
counter restarts it’s count every 100ns, we expect the count 
of the second counter (Q1) to increment by 1 every 100ns, 
varying from “0000” to “1001” before starting over.  
 

The expectation for the state behavior in this scaled down 
simulation is that the state should change every 1ns.  Further, 
if the decoder is working correctly in conjunction with the 

state machine S1 should correspond to a “sevsegEN” value 
of “000001”, S2 should correspond to a “sevsegEN” value of 
“000010”. If this behavior is demonstrated in the simulation 
the seven- segment serialization is working properly.  
Comparing these expectations with the simulation results 
reveals that the design functions as intended. For the sake of 
formatting and clarity, the simulation results along with a 
video of the final project functioning properly are shown on 
the following page in order to present them in a clear aspect 
ratio. 

 
 
 

 
 
 
 

 
Scaled-down Simulation Result (clock 1ns, Q0 increment every 10ns, Q1 increment every 100ns, state change every 1ns) 

 
 
Below is a link to a video of the final fully functional result: 
Stopwatch 

 
 

https://vimeo.com/655169740


 

CONCLUSIONS 

 The design of a digital stopwatch proved to be a 
deceptively challenging project with many great learning 
outcomes.  Because there are very few inputs and outputs 
involved in a stopwatch, it seems at first glance to be a very 
simple and easy project to design. The circuit ended up with 
three main sections: counting, memory storage and recall, 
and display. Each of these sections needed to work together, 
necessitating the use of multiplexors controlled by an 
algorithmic state machine. One surprisingly difficult design 
problem was memory storage and recall.  The first attempt 
we made was to capture the value coming out of the 6 to 1 
counting multiplexer, however we then realized this would 
only record one digit value at any given time and therefore 
was not what we wanted to record.  Potential improvements 

to the design would be the expansion of the lap functionality 
to record and recall multiple different lap times, as well as the 
inclusion of colons separating minutes from seconds and 
seconds from tenths of seconds. Another great outcome of 
this project was working with a group of designers to reach a 
specific goal.  There were many times when the group was 
stuck on a problem, and it was very rewarding when one of 
the members arrived at a working solution. 
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