

Digital Stopwatch

List of Authors (Mohammed Shatit, Matthew Adams, Austin Nguyen)

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: matthewadams@oakland.edu, austinnguyen@oakland.edu, mshatit@oakland.edu

Abstract— Stopwatch is a digital system of counting to account
for time took for an event. It is widely used in sports and
laboratories. The stopwatch works by pressing a button to start
and stop or simply turning the count on and off. The count can
then be re-started or continued. The saved time of the interval
can be very precise and accurate depending on the design of the
stopwatch. Some digital stopwatches can save more than an
interval of time. The digital stopwatch here is implemented
using VHDL in Vivado and coded on a Nexys Artix-7 FPGA.
This design of the stopwatch includes 6 7-segment displays and
a couple of buttons and switches to control it. The design has
been tested and simulated to account for all scenarios and it
mainly came down to controlling the displays through a finite
state machine and connecting different types of counters
together to show 6 digits going from 00:00.00 to 59:59.99 and
repeating.

I. INTRODUCTION

This report will cover the design methodology for a digital
stopwatch along with a description of the experimental

setup used to verify the functioning of the project and the
results of this verification testing. A functional digital

stopwatch has become a staple of modern life. Stopwatch
capabilities are a feature that is simply expected in every

wristwatch and smartphone in today’s market, making the
implementation of this technology a necessary skill. This

project will utilize a variety of skills learned throughout this
course, including the use of synchronous and asynchronous

circuit elements, 7-segment display serialization, clock
signal modulation, and memory storage and recall.

II. METHODOLOGY

A. Counting Execution

The goal of this portion of the system is to produce six

signals, each of which will accurately reflect a digit of the
time elapsed since the start switch was activated. This goal
was achieved by directly adapting the stopwatch example
provided in the VHDL Unit 7 slides on the course website [1]
to function for 6 digits with the two most significant digits
representing minutes, the next two most significant
representing seconds, and the two least significant
representing tenths of seconds and hundredths of seconds
respectively. The primary difference between our design and
the lecture example referenced above is the addition of

another modulo-6 counter and BCD counter to the left of the
existing modulo-6 counter. These modulo-n counters were
made by generic mapping the file “my_genpulse_sclr” from
the course website to suit our needs and the BCD counters
were created from “mybcd_udcount” from the same website
[1].

Below is an image of the lecture stopwatch design

referenced previously, followed by the modified design. Both
designs consist of three input signals (clock, pause, and
resetn), and in both designs all three inputs serve the same
purpose. The clock signal serves two purposes: to
synchronize all of the counters as well as to provide a “base
unit” for the counting functionality. The resetn signal resets
all the counters when it goes “low”, and the pause signal
begins or resumes counting when it goes “low” and pauses
when it goes “high”.

The counting is implemented first by feeding the clock
signal into a modulo-1,000,000 counter. Since the clock ticks
every 10ns, the result is a “high” z output from the modulo-
1,000,000 counter every 0.01 seconds. This z signal (Z0) is
then fed directly into the first BCD counter of the array. This
BCD counter will have a Q output (Q1) and a Z output (Z1).
This will result in Q incrementing every 0.01 second (“0001”,
“0010”, “0011”…) until reaching a maximum value of
“1001” at which point it starts over. The signal Z1 will go
“high” every time that Q1 reaches “1001”. Signal Z1 is then
fed into an AND gate along with signal Z0 and the output of
this AND gate (E1) is fed to the “enable” input of the next
BCD counter. This process is continued for the entire array
of counters, the AND gate feeding each counter’s enable fed
by the Z output of the previous two counters.

Fig 1. Counting Implementation from Lecture

mailto:austinnguyen@oakland.edu

Fig 2. Extended Counting Implementation

B. Lap Memory Storage and Recall

The goal of the Lap Memory Storage and Recall

section of this system is to be able to record and store the

values of time at a specific point without interrupting the

stopwatch Counting Execution and be able to display the

recorded lap time on the seven segment displays also

without interrupting the stopwatch. To do this, 6 4-bit

registers are implemented into the design. The 4-bit registers

will receive its input signal from the output of the BCD

counters and the Modulo-6 counters from the Counting

Execution portion of the system. The ‘Enable’ of these

registers will receive its signal from a button on the FPGA

board, this will act as the “Lap button.” With this set up,

whenever the ‘Enable’ receives an active high signal (button

is pushed) the output from the BCD/modulo counters at that

point in time is stored into the registers. This completes the

Lap Memory Storage function.

Fig 3. Lap Memory Storage Registers

Now that the Lap time is stored, the user of the

stopwatch needs to be able to display the recorded time.

This is done through the implementation of a 6-to-1

Multiplexor and a 2-to-1 Multiplexor. The 6-to-1

Multiplexor is used to separate and organize the 6 stored

values and place them into their proper place value as a unit

of time (the display portion of this report will explain this

further). Next, a 2-to-1 Multiplexor is used to decide

between displaying the current stopwatch count or the

stored Lap time. This Multiplexor will receive 3 inputs: one

from the 6-to-1 MUX connected to the Counting Execution

portion, one from the 6-to-1 MUX connected to the Lap

Memory Storage portion and one from a switch on the

FPGA board. The switch from the FPGA board will decide

whether the 2-to-1 MUX sends an output of the current time

or the lap time. Therefore, this switch will be capable of

choosing which signal is displayed. The multiplexors were

made by modifying “my_busmux4to1” and the registers

were implemented using “my_rege” from the course website

[1].

Fig 4. MUXs

C. Display

To display the 6 digits of the count of the stopwatch, 6 of the
8 7-segement displays were used of the Nexys board,
however, it is not as simple as connecting the output of the
counters to the displays. These 7-segment displays are all fed
through the same signal, meaning a one counter output signal
‘Q’ will be displayed on all the displays at once. This is not
what this design should accomplish. A solution to this is using
a multiplexer, 6-to-1 specifically, to control which counter’s
output signal to display on the correct 7-segment display by
turning all 7-segment displays off except for the right place
for the digit of this counter. To control this operation, a finite
state machine is used to alternate between the signals of the
counters and the correct display for each one. For 6 displays,
the state machine will have 6 states each stepping into the next
state if E is “high”, which is the Z output signal from a 1
millisecond counter to have a 1 millisecond show time for
each display. It will also have a resetn to go back to state 1 in
the case of restarting. The output of the state machine will be
a 3-bit, S, that will go in as the select signal of the multiplexer
and the input for a 3-to-8 decoder to convert these 3-bit into
an 8-bit signal with “low” bits except for the right place of the
displays that will be display the counter digit. This operation
is called 7-segment serialization. Below is the Algorithmic
State Machine shown. The decoder, modulo-n counter, and
state machine where created by modifying provided files from
the course website [1].

Fig 5. ASM

III. EXPERIMENTAL SETUP

 The functioning of most features (stop/start, lap

write/read, resetn) for this project were verified directly by
loading the project onto the board and testing the features.
However, observing the behavior of the state machine as
well as the correct execution counting a behavioral
simulation is especially useful. There is, however, a
problem with simulating this design directly; namely the
timing of the circuit must be scaled down. The simulation
below was generated using a clock with a period scaled
down to 1ns from 10ns. Also, the modulo-1,000,000
counter was scaled down to a modulo-10 counter and the
modulo-100,000 counter was scaled down to a modulo-1
counter.

IV. RESULTS

In order to verify the counting functionality, we will take
note of the simulation output of the Q outputs of the counters.
For the sake of time, we will focus here on the two least
significant digits. Please note, these simulation expectations

are utilizing the “scaled down” circuit mentioned in section
III. The expected effect is that every 10ns the count of the
first counter of the array will increment by 1 varying from
“0000” to “1001” and repeat. Similarly, since the first
counter restarts it’s count every 100ns, we expect the count
of the second counter (Q1) to increment by 1 every 100ns,
varying from “0000” to “1001” before starting over.

The expectation for the state behavior in this scaled down
simulation is that the state should change every 1ns. Further,
if the decoder is working correctly in conjunction with the

state machine S1 should correspond to a “sevsegEN” value
of “000001”, S2 should correspond to a “sevsegEN” value of
“000010”. If this behavior is demonstrated in the simulation
the seven- segment serialization is working properly.
Comparing these expectations with the simulation results
reveals that the design functions as intended. For the sake of
formatting and clarity, the simulation results along with a
video of the final project functioning properly are shown on
the following page in order to present them in a clear aspect
ratio.

Scaled-down Simulation Result (clock 1ns, Q0 increment every 10ns, Q1 increment every 100ns, state change every 1ns)

Below is a link to a video of the final fully functional result:
Stopwatch

https://vimeo.com/655169740

CONCLUSIONS

 The design of a digital stopwatch proved to be a
deceptively challenging project with many great learning
outcomes. Because there are very few inputs and outputs
involved in a stopwatch, it seems at first glance to be a very
simple and easy project to design. The circuit ended up with
three main sections: counting, memory storage and recall,
and display. Each of these sections needed to work together,
necessitating the use of multiplexors controlled by an
algorithmic state machine. One surprisingly difficult design
problem was memory storage and recall. The first attempt
we made was to capture the value coming out of the 6 to 1
counting multiplexer, however we then realized this would
only record one digit value at any given time and therefore
was not what we wanted to record. Potential improvements

to the design would be the expansion of the lap functionality
to record and recall multiple different lap times, as well as the
inclusion of colons separating minutes from seconds and
seconds from tenths of seconds. Another great outcome of
this project was working with a group of designers to reach a
specific goal. There were many times when the group was
stuck on a problem, and it was very rewarding when one of
the members arrived at a working solution.

REFERENCES

[1] D. Llamocca, “VHDL Coding for FPGAs,”

http://dllamocca.org/VHDLforFPGAs.html

	I. Introduction
	II. Methodology
	A. Counting Execution
	B. Lap Memory Storage and Recall
	C. Display

	III. Experimental Setup
	IV. Results
	Conclusions
	References

