
4 Way Traffic Light Controller

Traffic Light Controller with an FPGA

Sam Narusch, Richard Pinto, Christina Salama, Adrian Sinishtaj
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-mails: adriansinishtaj@oakland.edu, cmsalama@oakland.edu, richardpinto@oakland.edu, snarusch@oakland.edu

Abstract— The importance of general driving
safety for everyday commute and travel leads all
the way up to traffic lights, and depending on
them to operate properly. Comprehending how a
four-way traffic light controller works and
replicating such in this project was the ultimate
objective, as we enforced the knowledge learned
from this course to achieve this goal. It was also
found that certain components were necessary to
make this controller fully operable, such as the
implementation of a gen-pulse in addition to a
basic counter. Through this, the implementation of
the code onto the Nexys A7 FPGA board was
much more efficient, and the desired results were
achieved. To better streamline the process of
completing this project, it is strongly
recommended to remember when it is necessary to
implement a gen-pulse, and to avoid at all costs
running a simulation if a gen-pulse is used, to
avoid any unwanted complications with the
operating computer.

I. INTRODUCTION

The goal of this project is to create a four-way traffic
light controller, using a PCB circuit connected to the
FPGA board. This project will implement the
knowledge from various topics learned in this course
and a variety of components including a finite state
machine (FSM), a counter, and a gen-pulse.

We found this project to be fascinating and a perfect
opportunity to further explore what was first
introduced in this class. Additionally, we recognized
that understanding the operations of a traffic light
system, along with the different stages each changing
light follows, is the optimal way to see how each
factor affects the big picture. It is critical to
understand how a product works before tackling
methods of improving the design and execution of it.

Given the importance of a four-way traffic light
controller, especially due to the fact that they are
integral to human society, we wanted to use what we
learned in class and apply our newfound knowledge
to dissecting and reworking the controller for our
own discernment.

When working on this project, the topics found to be
the most important from this course were the sections
focusing on the Finite State Machine (FSM), building
a counter— and more specifically, exploring how to
create and implement a gen-pulse— along with the
importance of when these tools are necessary when
creating a project. In other aspects, we took it upon
ourselves to learn and further explore the Nexys A7
FPGA board past what was taught in class, such as
utilizing the headers on the board. Additionally, we
decided to construct the circuit on a PCB, with
various LEDs and resistors securely soldered to the
PCB, in order to replicate the way a four-way traffic
light controller operated, giving it a much more
polished and clean final look.

II. METHODOLOGY

The plan to design the project began with designing
the state machine. The main purpose of the state
machine was to create a different state for each
combination of lights being turned on, then creating
individual states inside the machine to emulate the
states of the lights. After the state machine was
complete, some kind of input was needed to control
the transition of the states.

To control the transition of the states, a counter was
used. This counter was created to count to twenty
eight, and output different signals depending on the
value of the current count. Six different signals were
created for this purpose, each becoming high at a
different count. These signals would just change the

state in a process that cycles through the state of the
traffic lights.

Finally, a module was needed to correlate the counter
with real time instead of clock cycles. The pulse
generator module is used for exactly this purpose [1].
The pulse generator was calibrated to output a high
signal every second, and this signal was used as an
input to the counter. This enabled the counter to
increment the count every second, instead of every
clock tick.

III. EXPERIMENTAL SETUP

The materials needed for this project will include the
Nexys A7 board, copper wires, and various LEDs
(red, green, and yellow). The design will consist of a
counter that utilizes a pulse generator that is input
into a Mealy FSM. The FSM ultimately controls the
lights on the PCB board. The pulse generator was set
to create a high pulse every one second, which was
then used by the counter to increment the count. Six
output signals were created to be set to high based on
what number the count is at. The six signals, “a, b, c,
d, e, f”, represent the variables at each stage of the
FSM that will determine the next state. Each signal
was set to high for a specific count and this signal
was fed to the FSM to determine the state of the
system.

The FSM that was used consisted of five different
states. Starting at state 0, “S0”, both the North/South
and East/West lights are automatically set to red and
the activation of the reset button always reverts the
system back to S0. While in S0, the system will wait
for 2 seconds, then based on the value of “a” and “d”
that is read, it will move to state 1 or state 3. If “a” is
a “1”, the system will move to state 1. If “a” is “0”
and “d” is a “1”, the system moves to state 3;
otherwise, the system will stay in state 0. In state 1,
the system will wait for signal “b” to go high at 10
seconds and then transition to state 2. While in state
2, the system waits until the 14 second mark for
signal “c” to go high and then will return to state 0.
Once the system is in state 0 for the second time, it
will wait until the 16 second mark for signal “d” to
go high and then will move to state 3. At state 3, the
signal “e” will go high at the 24 second mark and
move the system to the final state: state 4. In the final
state, the system waits until the 28 second mark for
“f” to go high and return to state 0 to complete a full
cycle. As seen above, a full cycle for the system takes
28 seconds. In state 0, both lights are red. Then, in
state 1, the North/South light is green and the
East/West light remains red. In state 2, the
North/South light changes to yellow and then goes

back to state 0 where both lights are red again. Next
in state 3, the East/West light turns green while the
North/South light remains red. Lastly, in state 4, the
East/West light transitions to yellow before returning
back to state 0 to start another cycle. In the test bench
file, the system was simulated to run for 28 seconds
or one whole cycle.

To implement the design to the external interface,
The six top level output variables, (gNS, yNS, rNS,
gEW, yEW, rEW) were mapped to the JA and JB
Pmod header pins on the FPGA board. The JA
headers were used for signals rEW, rNS, and yEW
while the JB headers were used for gNS, yNS, and
gEW. From these pins, wires were connected to the
corresponding LEDs on the PCB board to control the
lights.

IV. RESULTS

What was found after working on this project and
uploading the code to the Nexys A7 board was that
there can be a lot of frustration involved in a project
like this. While developing the code, there were a few
instances when a single line was missing that would
make the simulation completely non-functioning.
Additionally, there were times when a single line
would only slightly affect the simulation, but it was
still not functional enough to be a proper stoplight.
For example, since the counter depends on the output
of the pulse generator, we were unsure if it also
needed a dependence on the clock. This created an
issue where the counter would increment on the
rising and falling edges of the clock, instead of only
on the rising edge. This created an issue that would
make the state machine do an entire cycle of the
count, while staying in state zero. Once this was
discovered, it was an easy fix.

After the code was completed, a PCB was soldered
together to display the outputs. Initially, the PCB did
not function properly. Unsure of whether this was an
issue in VHDL or on the PCB, a DC voltage source
was used to probe the LED’s. Since some of them
functioned and some did not, examination of the PCB
began. It was discovered that there was a bad joint
with a resistor connected to the ground pin.

CONCLUSIONS

While working on this project, one issue arose when
implementing the code onto the board. The issue,
upon later discovery, was that our first design did not
include a gen-pulse signal. Without the gen pulse
signal, the counter could not count to a high enough
value for the lights on the traffic light to visually

show the different states. This issue was then quickly
resolved once the gen-pulse was introduced to the
project and made so that it had an output after every
second, and using that output for the counter. The
main take away from this project was being able to
implement all the ideas learned in class to create one
project. The expectation we had as a group was high,
as we strived to design and implement a fully
functioning traffic light, with our next goal being
how to figure out how to implement one in the most
concise and simple way, as we wanted to imitate a
real world situation. For the audio-visual portion of
our project, we created a sample of our traffic light to
better illustrate the results for our project. As shown
in the figure below (Figure 1), 12 LEDs were placed
in series along with resistors.

Figure 1: LEDs placed in series on the PCB

REFERENCES

[1] Llamocca, Daniel. “Digital Logic Design.” ECE
2700, Oakland University, Rochester, MI,
December 2021.

