
8-bit Simple Signed Calculator: Keyboard and Display

Authors: Rita Brikho, Ramsin Yaqo, Ansam Ghareeb,

and Randa Matti

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: Rzbrikho@oakland.edu, Ramsinyaqo@oakland.edu, Ansamghareeb@oakland.edu,
Randamatti@oakland.edu

Abstract

This project is aimed to provide an 8-bit simple
calculator whose input will be taken from a keyboard
and the result will be displayed on seven segments of
FPGA. This simple calculator is capable of addition,
subtraction, multiplication, and many other functions.
This calculator is close to real life application as the
user can easily input the values using the standard
computer keyboard.

Introduction

Our goal for this is to make a simple 8-bit calculator
which is similar to a real-world calculator. The
calculator does the following operations: addition,
subtraction, multiplication, division, exponent and
absolute. Two 2-digit inputs are taken from the
keyboard which will be used to operate on. After the
input is taken from the
user, an operation code is given which determines
which operation is to be done. After the operation is

done the result is taken through a serializer which
then displays the output at the 8 7-segment displays
on the FPGA named Nexys-A7. This whole thing is
achieved using different paths. For example, the data
path contains the operations, mux (determines which
operations is done) and the serializer
This project has the potential to be used in a variety
of real-life situations. By adding a function for
scientific notation and providing the output in
decimal format, this calculator could be converted to
a simple scientific calculator. Another use is to solve
elementary mathematics problems, such as those
encountered in teaching or accountancy.

Methodology

The goal for this project is to visualize the calculator
on the Nexys-A7 board. In order to do that, the
essential task of designing the code needs to be
completed. The whole project is simplified into a
block diagram which is explained in Figure 1

Figure 1: Block diagram of 8-bit calculator

Each block diagram has its purpose which computes
the input to and outputs the respective result.

● Ps2 Keyboard
 The ps2 block is the main controller for
keyboard protocol. It works based on two
lanes, ps2_c(clock) and ps2_data. When a
button is pressed on the keyboard the
protocol starts.

Figure 2: Communication between the host and the
device.

It has a starting bit, parity bit, ending bit and the 8-bit
data. The starting and ending bits indicate the start
and end of the protocol respectively. The parity
indicated whether transmission is ok or not. When the
button is pressed on the keyboard (excluding special
keys) the protocol scans the keyboard. The protocol
waits for 100ms and then rescans whether the key is
released or not. If the key is released f0 code is sent
out. The module determines when f0 is received and
the button is released. The module is implemented
with the 2 lanes to determine and to extract the data
from the keyboard. The module then sends out two
outputs, one is ps2_dout which is the 8-bit data and
ps2_done.
Ps2_done displays whether the data is valid or not
(high for validity) This module is given by the lab.

● Keyboard Decoder
 The decoder waits for the output from the
ps2 keyboard. It has a series of conditions to
determine the input whether it is data or operation. If
Ps2_done from the keyboard comes as low (0) then
the decoder starts over again till the ps2_done is one.

If the condition is met, the input is run through
several combinations as shown in Figure 3 stored to
check whether the input is data or operations.

Figure 3: Combinations stored in the keyboard
decoder

For example, if the input is F7 or G which is not in

the stored combinations the decoder will run the two
conditions simultaneously and will show the data as
invalid. If the input matches the data stored in the

input combinations, then
It will assign Hex Value = ‘1’ or if it matches with
the operation combination then it will assign it to
operation.

Figure 4: Block diagram of the keyboard decoder

● Keyboard Input Controller
This block is a finite state machine. Whenever the
code runs it goes into a state of loops till the hex
value =’1’ is achieved. This is added because we can
only enter one key at a time. To get multiple hex

digits we use fsm . At the start fsm is at state 0 till we
get hex value =’1’ then goes to state 1 to get the
seconds data. Since we have 2 inputs, we take them
as A and B respectively. We assigned state 0 and 1 to
A and state 2 and 3 to B to the data. Figure 5 shows
how the fsm goes through the states.

Figure 5: Block diagram of the keyboard Input
Controller (FSM)

S0 → Gets the first digit of first input from keyboard
→ A(3 - 0) = Hex data
S1 → Gets the second digit of first input from
keyboard → A(7 - 4) = Hex data
S2 → Gets the first digit of second input from
keyboard → B(3 - 0) = Hex data
S3 → Gets the second digit of second input from
keyboard → B(7 - 4) = Hex data

● Operation Blocks

The operation block contains the six operations
(addition, subtraction, multiplication, division,
exponent and absolute). Initially the data is in VHDL
and since we are using numeric_std we cannot
perform numeric operations on the input. For this we
convert VHDL into unsigned using the function, then
to integer. After the inputs are converted into integers
the respective operations are done and the result is
then again converted back to STD_logic_vector. It is
important to note that the inputs are 8 bits each and
the output STD_logic_vector is 32 bits.

● Addition

To implement the addition operation the above
operation is used to convert VHDL to integer,
perform the addition operations and back to
STD_logic_vector which is in 32 bits.

Figure 6: Block diagram of Addition

● Subtract
To implement the subtraction operation the above
operation is used to convert VHDL to integer,
perform the operation and back to STD_logic_vector

Figure 7: Block diagram of Subtraction

● Multiply
To implement the multiplication operation the above
operation is used to convert VHDL to integer,
perform operation and back to STD_logic_vector

Figure 8: Block diagram of Multiplication

● Divide
To implement the division operation, the same data
type conversion function is utilized. Input divided by
0 cannot be done so we generate an error. But the
division operation is not as same as the other
operations due to it giving an error in the simulation
“divided by 0 is not possible “. Thus, we use a clock
and reset switch meaning it’s a sequential logic.
Simple combination can be used but it gives the
error. Changing the input into sequential and clock
dependent removes the error in the simulation (/0
which is the unknown state).

Figure 9: Block diagram of Division

● Exponent
To implement the exponential operation the above
operation is used to convert VHDL to integer,
perform the operation and back to STD_logic_vector.
This logic is valid for simulation only.
Input 1 is set to k structure and is given a variety of
options which are selected by the operator. The
operator decides which of the constants is to be sent.
“**” cannot be used for variables thus cannot
synthesize the design. To synthesize the operation, it
is a must to give a constant which is why we used k
structures.
 There are two limitations to this operation. 1) If the
output exceeds 32 bits we generate “0” at the output
since we haven’t implemented an error. 2) The max
power we can use is 31.

Figure 10: Block diagram of Exponent

● Absolute
To implement the subtraction operation the above
operation is used to convert VHDL to integer,
perform the operation and back to STD_logic_vector

Figure 11: Block diagram of Absolute

● Mux
All the six operation blocks are connected to the
mux. The mux decides which operations are to be
determined using the operation code given. For
example, code = “0” we will use add and if code =”
5” we will use exponential operations.
 We have 4 operations bits for the code, but
originally, we were using 3 bits. The extra bit is
reserved for the future if we want to add more
operations. Since we have 6 operations, we are using
3 bits for the code. Figure 12 shows the selection of
codes that the mux uses to determine the operation.

Figure 12: Codes for each operation

● Serializer

Serializer is a 7-segment display which displays the
output at the end of the code. The code for the
serializer was already given however it was valid for
a 4-digit display. Some modifications are added
which display the output for 8 digits.

Simulations
The simulations for this project are done on Vivado
which is a chip development and high-level synthesis
program.
We used this program to verify our model. We first
simulate the ps2 input. Using the keyboard, we first
input 5, which will be the 1st input unit digit. When it
is entered it will go into state 1. Then we input 0
which will be the 1st input tens digit. This will
complete the first input. and the FSM will be at state
2 Then we will input 6 which will be the 2nd input
unit digit. then we will input 0 which will complete
the second input. Now we will input f1 which will
indicate the subtraction operation.
After inputting our 2 inputs A and B and using the
subtractions operator we get the following result in
figure 13.

Figure 13: Simulation

Experimental Setup

The solution was devised and was designed
successfully in the implementation phase. The
keyboard is used to input data and all relevant
information for the task. That includes two 8-bit
numbers and the 3bit select line for choosing the
desired operation of the ALU. Select lines are the
input at the MUX which selects which input will be
given on the output as shown in the simulations in
Figure 13. The data was processed by the operators

as their instances were called in the top model and
data of all the operations were available at the input
side. The select line would decide which function is
selected and that data will go on to the output. The
seven-segment display will then display the result on
the boards.

Results

The 8-bit calculator performed admirably. The user
would enter two 8-bit values, 1 and 2, as inputs. The
Keyboard input controller (FSM) would be used to
accomplish this. The user must then utilize the select
line attached to the mux to select the desired math
operation. '0' represents addition, '1' represents
subtraction, '2' represents multiplication, '3'
represents division, '4' represents absolute, and '5'
represents exponential. If the user chooses something
else, an error will be sent to the output. The result
would be displayed on the seven-segment display in
hexa-decimal.

Visit this link as it demonstrates the project:
https://www.youtube.com/watch?v=GUyvZex0MJ0

Conclusions

The assigned assignment was completed successfully
on the FPGA Nexys-A7 board. On the boards, the
output was displayed on a seven-segment display.
The keyboard input controller controls the data input
and selects the processes to be performed. Hands-on
learning is used to implement the task, which

includes the use of a display, a board, and codding.
This can aid in the execution of the many duties on
the board.
Despite making a calculator that is unique in many
ways, there are plenty of improvements that can be
done. One of those could be to add support for
negative exponents or taking roots, as that will make
the calculator more advanced. Another suggestion is
adding the ability to use constants like e and π.

References

[1] VHDL coding for fpgas. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFP
GAs.html.]

[2] A. Chapweske, “PS/2 Mouse/Keyboard
Protocol,” The PS/2 mouse/keyboard protocol.
[Online]. Available:
http://www.burtonsys.com/ps2_chapweske.htm.

[3] A. Brown, “Nexys A7 Reference Manual,” Nexys
A7 Reference Manual - Digilent Reference. [Online].
Available:
https://digilent.com/reference/programmable-
logic/nexys-a7/reference-manual.

[4] A. Brown, “Nexys A7 Reference Manual,” Nexys
A7 Reference Manual - Digilent Reference. [Online].
Available:
https://digilent.com/reference/programmable-
logic/nexys-a7/reference-manual.

