
4-Way Traffic Light
To control incoming traffic

Cali Malone, Bianca Muller, Marielly Perez Lugo, Azra Jakupovic
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: calimalone@oakland.edu, bmuller@oakland.edu, mperelugo@oakland.edu,
azrajakupovic@oakalnd.edu

Abstract—We will be using an Artix-7 Nexys-4 DDR FPGA board to simulate a four-way traffic light at an intersection.
The code will be in VHDL language. The inputs will be counter values, while the outputs will be LED lights. This
simulation will demonstrate how traffic light controls are conducted in order to maintain safety in daily traffic.

I. INTRODUCTION
For this project we have chosen a 4 way traffic light

controller. A traffic light controller plays an important role in
controlling the vehicular flow on a busy road, such as the
four-way intersection that this traffic light is designed for.

A traffic light controller assigns the right of way to
pedestrians and road users by the use of lights in standard
colors: green for go, yellow for slow down and prepare to
stop, and red for a complete stop. Each color of light lasts for
a different amount of time. In this project, there will be no
right of way for pedestrians as this is intended to be a light for
a busy, high speed intersection without crosswalks. The goal
for this four-way traffic light controller is to follow the
methodology of coding using VHDL uploaded to an Artix-7
DDR FPGA board, to create a successful model of a four-way
traffic controller.

II. METHODOLOGY

VHDL language will be used in order to
successfully program the Artix-7 Nexys-4 DDR FPGA
board. The power ports, and LED lights will be used to
simulate the four way traffic light. Specific registers such as
the counter register will be utilized to calculate the time in
which the color of the LED will change. The state machine
that will be made to demonstrate the functionality of a four
way traffic light intersection will have its series of sequence
color changes, dependent on clock ticks. Grouping of the
states can be shown in Figure 1 and Table 2. An example
of one of the state processes would be G1G is a green light
for a car going north on the main road, or as in group one,
whereas G2G is a green light for a car going south from
the side road and in group 2. There will also be a clock
variable to add timing to the program in order to change
the light sequence, otherwise known as the states, that will
occur. This will depend on how much time has passed and
whether or not the “count” for the traffic lights has reached
a “HIGH” level. There will also be a resend signal to restart
the count back to 0. This is demonstrated in Table 1.

Figure 1: Four Way-Traffic Light Controller Scenario.

Table 1: Output table with group number and signal description.

mailto:calimalone@oakland.edu
mailto:bmueller@oakland.edu
mailto:mperelugo@oakland.edu
mailto:azrajakupovic@oakalnd.edu

Table 2: Inputs and Outputs of each component.

A. State Table/Excitation Table

A state table was necessary to easily visualize the
inputs (za, zb, and zc), present states, the next states, and
outputs for this project. The table represents all possible
states, as well as the correct next state when per input. It also
demonstrates the color a traffic signal will be for each group
according to the present state. The outputs are represented
using the signals shown in Table 2.

Table 3: State Table.

The excitation table mirrors the state table with state
1 = 000, state 2 = 001, state 3 = 010, state 4 = 011, and state 5
= 100. The output is split for group 1 and group 2 and the
LED colors are listed as RGB values where green = 010,
yellow = 110, and red = 100.

Table 4: Excitation Table

B. Finite State Machine

A Finite State Machine (FSM) helps visualize the
order of states and the color changes in the traffic lights, all
while keeping track of the current state the program is in.
Changes in state and color are signalled by changes in the
inputs (Ea, Eb, and Ec) that the FSM receives. From there, the
current state will determine the light's color, as well as the time
in which the two groups on the traffic light will stay in each
color. A Mealy-type Algorithmic State Machine is used to
exhibit this in Figure 3. This FSM was designed with a loop in
mind, with state 3 acting as an intermission state where both
lights are red.

Figure 2: Circuit

Figure 3: Mealy- type Finite State Diagram.

C. Clock/Counter
The purpose of the clock and counter in the four-way

traffic controller is to determine how long each LED should
be a certain color in each state and to determine when to
change states. One counter is used to count the clock ticks
when an LED is supposed to turn from green to yellow in the
same state. Another counter is used to determine when to
change the FSM from one state into the next. States 1, 2, 4,
and 5 will be a total of 20 seconds. When the traffic lights
for group 1 are green, they will stay green for 15 seconds

and proceed to turn yellow for 5 seconds while group 2
lights are red for the entire 20 second period shown in Table
5. This is the same when group 2 lights are green. State 3
occurs after state 2 and state 5 for a total of 3 seconds as a
reset shown in Table 6.

Table 5: Timing of the traffic lights for states 1, 2, 4, 5.

. Table 6: Timing of the traffic lights for state 3.

III. EXPERIMENTAL SETUP

In regard to the experiment, we have compiled a stateschange,
top, top_tb, my_genpulse_sclr, and xdc file.

For the state changes we have grouped the four different light
changes into 5 different stages, S1, S2, S3, S4, and S5. The
inputs will determine in which state we will be along with the
previous state. For state 1, if Q1 is 1 then we will go into state 2.
If Q1 is 0, then we will remain in the same state. This changes
when we get to S5. When we get to S5, if Q2 is 1, we will go
back to S3. If Q2 is 0, then we will stay at S5. This would cause
a reset for the traffic lights.

There will be a bit change of plus one for every state change. By
the time we get to S5, we are at a value of 4. These values will
then be converted into time values in the testbench.

Everyoutput Q will have a corresponding value of time in which
the light will stay on, and is linked to one of the three counters as
shown in Figure 2. It will also correspond to a specific color of
RGB LED, one for each group. The first group's RGB values in
S1, will be green and will last for 15 seconds. In S2, the color
will be yellow and will last for 5 seconds. In S3, the value is red.

During these states group 2s RGB has been red the entire time.
S3 is the “break” state of 3 seconds. This pattern flips from
S3-S5. The inputs will be placed into the testbench in order to
control these states.There is no need to specify any inputs in the
testbench, because the inputs and process from the state changes
file should work automatically.

IV. RESULTS

When running the program for the traffic light controller,
everything seemed to work as it should.The RGB LEDs turned on
correctly, changed colors correctly, and the timing turned out as it
should. A link to the results of the simulation is shown below.

https://drive.google.com/file/d/1w2frjjPWzK5oxb2tL_8uT6yruc0
_M6GY/view?usp=sharing

CONCLUSION

After implementing and completing this project, there was one
key takeaway learned. This is how the counter (or multiple
counters) can be manipulated to control the status of a finite state
machine.There were many challenges that came along the
implementation as well. The most plentiful challenge was the
timing of each RGB LED for each state. Until the issue was
figured out, the timing was originally showing in nanoseconds.
We converted the program from nanoseconds to seconds and for
the most part it world, besides for State 3. State 3 kept occurring
in nanoseconds until muleptile recreations of our code to fix it.
Eventually the program worked as it should. Another key
takeaway for the project was the exposure and insight to the
Artix-7 Nexys DDR FPGA board. Although we were all exposed
to labs and got exposure to an FPGA board there, we never used
it in the way we did in this project. Therefore, we were able to
deepen our learning on the board even more.

REFERENCES

[1] Llamocca. “RECRlab.” VHDL Coding for Fpgas,
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[2] “Finite State Machines: Sequential Circuits: Electronics Textbook.” All About
Circuits,
https://www.allaboutcircuits.com/textbook/digital/chpt-11/finite-state-machines/.

[3] “Digital Circuits - Finite State Machines.” Digital Circuits - Finite State
Machines,
https://www.tutorialspoint.com/digital_circuits/digital_circuits_finite_state_machi
nes.htm.

[4] Vivado Tutorial - Xilinx.
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-
Design/2013x/Nexys4/Verilog/docs-pdf/Vivado_tutorial.pdf.

https://drive.google.com/file/d/1w2frjjPWzK5oxb2tL_8uT6yruc0_M6GY/view?usp=sharing
https://drive.google.com/file/d/1w2frjjPWzK5oxb2tL_8uT6yruc0_M6GY/view?usp=sharing

