
Signed Calculator with Seven Segment Display

Names: Michael Dunnigan, Andrew Waite, Shahul Hameed Arif Batcha

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: michaeldunnigan@oakland.edu, agwaite@oakland.edu, sarifbatcha@oakland.edu

Abstract- Our goal is to create a 6-bit signed

calculator that has the ability to add, subtract,

multiply and divide signed numbers. We also want to

display the output of these calculations on the built in

seven segment display on the FPGA. On top of that,

registers will also be used to cut down on the number

of inputs needed to use the calculator.

I. INTRODUCTION

For our project, we will be using Vivado to create

a signed 6-bit calculator capable of performing the

four fundamental calculations (adding, subtracting,

multiplying, and dividing). The results of the

calculations will then be displayed in decimal form

on a seven-segment display.

Our main reason for choosing a calculator was to

further increase our understanding of binary data

manipulations. This project will also expand our

knowledge of not only seven segment displays but

registers as well. We plan on using multiple registers

to save our input data and multiple seven segment

displays to show our solution. Our calculator will

cover the three main tasks of any digital system -

receiving/saving data, manipulating data, and

displaying the results. Many of the modules used in

this calculator such as the register and multiplier have

been taught to us in class. However, the calculator

will also utilize some logic circuits that were not

covered in class such as the multiplier and a special

5-bit hexadecimal decoder. Our end goal is to utilize

the base logic circuits taught to us in class to create a

robust yet easy to use calculator.

II. METHODOLOGY

The calculator will be composed of many logic
circuits split into three different segments. The first
segment is the input/storage section. This section will
include two 6-bit registers to store the two input values.
Also, we plan to feed the outcome of any calculation
back into the second register for sequential
calculations.

The second segment of the calculator will be the
data manipulation section. This section will contain all
of the circuits necessary for performing the
fundamental calculations. This segment will also
require a component that can change between signed
and unsigned binary, as the divider being used is not
capable of signed division without them.

The final segment of the calculator is the data
display section. This section will contain only a single
yet rather complex circuit capable of receiving a signed
6-bit signal and converting it into a 2-digit hexadecimal
signal with and extra signal to indicate positive or
negative. Each of the three group members worked
consecutively on all three segments to increase our
general understanding, however, for the report, each
student chose a specific segment of the calculator to
explain in detail.

A. Input and Storage Segment

The main goal of this segment is to allow the user
to enter data quickly and easily to the device while still
using the fewest inputs to avoid confusion from the
operator. For that reason, the decision was made to
connect both registers to the same input bus. Each
register also has a button on the FPGA connected its
‘enable’. This reduces the number of inputs needed
from 12 to 8. Along side of this, we also plan on feeding
the output of the calculation back into one of the
registers to make sequential calculations easier. This
will require a 2 to 1 multiplexer to connect to one of the

about:blank
about:blank
about:blank

registers. The multiplexer will allow the user to choose
whether they would like to load the previous
calculation(sequential calculation) or to load a new
data stream.

B. Data Calculation Segment

The biggest problem that had to be solved when
designing the data calculation segment was which
signing convention to use for the data. Both sign and
magnitude as well as 2’s complement were considered,
however the latter was ultimately chosen. We had
originally planned on using sign and magnitude as it
would make switching from signed binary to unsigned
binary trivial, however, we soon realized that using
sign and magnitude would require a complete redesign
of our adder and subtractor components, so 2’s
complement was chosen instead. This left us with the
task of creating two components that switched from
unsigned binary to 2’s complement and vice versa for
use in the unsigned divider. This proved to be an easier
task than expected and after creating the 2C to unsigned
component using XOR gates and a 6-bit adder, we were
able to modify the code to create a component that
could change back to 2C.

C. Data Output and Display Segment

Our group had expected the data display segment

of the project to be the easiest part, but it proved to be

a lot trickier that initially thought. A lot of thought

had to be put into designing components that

converted a six bit 2’s complement number into a

decimal answer. This problem was solved by first

converting the 2’s complement into an unsigned

binary number with a sign bit concatenated to it

(essentially sign and magnitude). Then this number

was sent into a custom decoder that converted every

possible output answer into a twelve-bit BCD

number. In this BCD, the four most significant bits

were used as the sign bit by decoding a negative sign

as the binary representation for 10 (1010). Finally,

the 12-bit BCD was segmented into 3 four bit groups

and sent to a general seven segment serializer.

I. EXPERIMENTAL SETUP

Once all of the project files were completed, we
began testing our project by using the simulation
function on Vivado. Immediately, we noticed that quite
a few things were not functioning as expected. There
were a few minor problems that were fixed
immediately such as typos in the BCD decoder and a
few port mapping typos in the top file. After these
issues were fixed, however, we noticed that there were
more errors that could not be fixed as easily. One such
problems was with the multiplier. Despite not showing
any problems when ran in a testbench individually, no
outputs were given when the multiplier was compiled
with the rest of the files. Our solution was to replace
the file with the simple code “F <= A*B” and let
Vivado generate a circuit to describe it. Another critical
issue we encountered when trying to testbench our
project was with the seven-segment display serializer.
The state-machine used in the serializer would not
recognize the clock signal, resulting in no state change
and only the first seven-segment display to be enabled.
While we never knew what truly caused this problem,
we were able to fix it by creating a new project in
Vivado and loading the project files into it.

II. RESULTS

The timing diagram above shows all four
operations of the calculator computing both negative
and positive numbers. Originally, certain results like
the multiplier were not outputting any data at all, but
after some heavy modification to the code, we were
able to get the timing diagram to display all the
expected outputs. Shown below is the calculator
performing all operations including the remainder with
A= -8 and B= 3.

-Addition of A=-8 and B=3

-Subtraction of A=-8 and B=3

-Multiplication of A=-8 and B=3

-Division of A=-8 and B=3

-Remainder of the division of A=-8 and B=3

CONCLUSIONS

After completing the project, our group was able to
make a few important conclusions. One lesson we
learned early on was the importance of designing a
detailed and easy to understand block diagram.
Coordinating the project would have been very difficult
without a visual aid like the block diagram to decide
what problem each group member should work on.
Similar to the block diagram, our group also recognized
how useful the use of the error codes that Vivado would
give after an implementation would fail. The error
codes allowed us to pinpoint exactly where and how
the project was failing. Overall, our group was very
satisfied with the final outcome of our project. It taught
us a lot about how data is managed and displayed in
digital devices. If there was one thing our group could
have improved on, it would have been changing the
calculator to compute number higher than -32 to 31.
We feel, however, that his project was a great
demonstration of our knowledge with Vivado/VHDL
and we look forward to expanding our knowledge even
further in the future.

REFERENCES

Llamoca, D. (n.d.). RECR Class Website. Fall 2020 -

ECE2700: Digital Logic Design. Retrieved

December 11, 2021, from

http://www.secs.oakland.edu/~llamocca/Fall2020_e

ce2700.html.

