

Scrolling Message on 7-segment displays

List of Authors: Grant Mckee, Jason Wegryn, Zachary Kilmer
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: ​jwegryn@oakland.edu​, ​grantmckee@oakland.edu​, ​zkilmer@oakland.edu

Abstract- Using the Nexys A7 FPGA trainer
board with its 7-segment displays, and VHDL to
create a scrolling message across all 8 of the
displays. This report will cover the design and
implementation of this system. The purpose was
to use all of the knowledge that was taken from
ECE 2700 and use it to develop a complex and
unique system.The Scrolling 7-segment displays
uses different MUX’s, a register, multiple
FSM’s, multiple counters, and a 3-to-8 decoder.
Major findings are to build big components like
the supershiftreg connected to the FSM’s
separately to erase some hassle in the
implementation later.The major
recommendation in order to successfully
complete this project is to get the circuit and
connections down on paper and understand it
before going into the implementation of the
VHDL coding.

I. INTRODUCTION
Our group will be creating a scrolling banner on
a 7-Segment display, with the message “ECE
2700”. Code for the project will be written in
VHDL. The scrolling effect of the letters will be
created by using registers to shift the values of
each letter to the next display. The user will use
the switches to select different scroll speeds,
scroll direction, and orientation of the letters on
the banner. The scrolling direction feature will
be implemented using multiplexers to change
the direction at which the intended message will
appear on the displays. The scrolling speed will
be controlled by counters. Then, the orientation
of the message will be controlled by multiple

FSM’s that will be selected by the user using
switches as the select bits of a 4-to-1 MUX. The
full connections and block diagram of the circuit
is shown in Figure 3 below. The motivation for
this project is to use aspects of what we learned
in the classroom and implement them in a real
life application. The class material that will be
used in this project will be registers,
multiplexers, FSM’s, counters, 3-to-8 decoder,
and 7 segment displays. All of these components
that were introduced in the class will be key
components in the implementation of our design.
The implications of our project will be
substantial as we use what we learned in class to
design and implement a project. Using the
information we know and having more exposure
to it will allow us as engineers to progress our
knowledge in the field as well as further
ourselves by having to search for more
information about a particular topic. These
things will allow us to be better engineers in the
future. The applications of this project in the real
world are limited but it will test us in almost
everything that we learned in the course. Some
possible applications would be for advertising.
One that you might see often are the electronic
billboards all along the highway. The simple
ones have a sliding message that sometimes will
have a different scrolling speed depending on
importance.

II. METHODOLOGY
A. Counters

The counters in our design will be used in
order to control the enables of various items in
the implementation. The first counters, which

mailto:jwegryn@oakland.edu
mailto:grantmckee@oakland.edu
mailto:zkilmer@oakland.edu

will control the enable of FSMreg, FSMregleft,
FSMregleftupsidedown,
FSMregrightupsidedown, and shift-registers, are
labeled as Counter 0, Counter 1, Counter 2, and
Counter 3. These counters will be used to
control the scrolling speed of the message across
the displays. For example, Counter 0 will release
a pulse every 1.5 secs this will cause all of the
FSM's connected to change states. This will also
cause the shift-registers to shift every 1.5 secs,
which is important as this is the component that
is scrolling the message. This counter will keep
these two components in sync which will protect
the system from potential glitches. The other
counter in the system will control the enable of
the FSM. This counter will generate a pulse
every 0.001 secs, which in turn will cause the
state of the FSM to change every 0.001 seconds.
Which is needed for our project because the
7-segment display has 8 displays all connected
to one connection so we need to be able to have
the FSM change its state quickly so that the
MUX and 3-to-8 decoder also change very
quickly. If this was not changing as fast as we
have it, a person would be able to see each letter
displayed at once, because the 7-segment display
can only display one letter at a time, but with
this implementation we are able to display each
character so quickly that the human eye cannot
detect it. Thus, making it look to us as a solid
message.

B. FSMreg’s

The FSMreg will control what will be
inputted into the shift-register based on the state
of the enable as well as the current state it is in
at that time. The state change time will be
controlled by counters in the system. As seen in
the ASM table below, states are laid out inorder
to display this message from right to left. The
FSMreg will start in State 1 and when the enable
is ‘1’ then the FSMreg will progress to the next
state. When this happens the FSMreg will output
‘E’, already decoded for the 7-segment display.

This output will be transferred to the input of the
shift-register where it will be shifted in order to
give the “scrolling” effect to our message. This
can be observed in Figure 1 shown below. The
FSMregleft, FSMregleftupsidedown, and
FSMregrightupside down will follow the same
ASM diagram other than the change of what is
being outputted during each state. This system
will continue to progress through the states as
shown in its particular ASM diagram shown
below. Then, once the last state is satisfied it
will go back to state 1 and then repeat the
process over again. This system will input our
message into the shift-register. These same
principles will work for the other 3 FSM’s
labeled, FSMregleft, FSMregleftupsidedown,
FSMregrightupsidedown. These different FSM’s
will just change the message as depicted in the
name. The FSMregleft will be the correct
orientation when shifting the message from left
to right. FSMregleft will also be for when you
are shifting from left to right but the message
will be upside down. FSMregrightupsidedown
will be for when the message is shifting from
right to left but the message will be inverted.
Using these different FSM’s, I was able to make
the display readable when shifting from right to
left and left to right as well as rotate the message
so it will be upside down while crossing the
displays.

C. FSM

The FSM will control the select bits for the
8-to-1 MUX’s, as well as, send those select bits
as an input on the decoder. These tasks will
cause the FSM to work as a controller for the
decoder as well as the 8-to1 MUX’s. The
importance of this controller is to ensure that
based on what select bit is being sent that the
correct displays will be on/off depending on the
progress of the scrolling message. The FSM
works as shown in the ASM diagram shown in
Figure 2. When the 0.001 sec counter sends a
‘1’ onto the enable of the FSM, then the system

will progress to the next state and output a
particular select bit according to Figure 2
below. This system will progress as follows
until it reaches the last state. When the last state
is satisfied the FSM will return to state 1 and
repeat the process. This is how our FSM
component will work in our design.

D. 3-to-8 Decoder

The 3-to-8 decoder will receive a 3 bit
signal from the FSM. This 3 bit signal will
determine what displays will be on as well as
what displays will be off. These select bits will
be imputed every 0.001 secs which means that
the displays will be turning on and off so fast
that it will look like a solid message to the
human eye. This is also a key component to
create the “scrolling” effect on our message.

E. 4-to-1 MUX’s

One of the 4-to-1 MUX will be the
controller of what clock the enable of the
FSMreg, FSMregleft, FSMregleftupsidedown,
FSMregrightupsidedown will follow. The
inputs of the MUX will be the four counters
and the output of the MUX will be one of the
clock signals based on the select bits being
inputted by the user. The user will input the
select by flipping two switches on the NEXYS
Board. The switch values will work as a 2 bit
signal that goes into the MUX and selects
which clock will be used to scroll the message
across the displays. This 4-to-1 MUX will act
as the speed controller for the scrolling of our
message. The other 4-to-1 MUX will control
which of the FSMreg’s go into the input of the
shift register. The inputs of the MUX will be
the 4 different FSMreg’s and the output will be
the FSMreg chosen by the user. The user will
be able to choose which FSMreg by flipping 2
switches on the NEXYS board.

F. 8-to-1 MUX’s

One of the 8-to-1 MUX will be used to
select what output from the 8 shift register will
be displayed on the 7-segment display. This
was pivotal to the success of our project as the
7-segment displays all run off 1 connection.
This MUX will select the letter that we want to
display based on the shifting process or the
shift register, as well as, the select bit. This
MUX will select a new letter every 0.001 secs
because the system is independent of the clock
and it will be presented with a new select bit
every 0.001 secs. This is what causes it to
choose a new position so quickly. This works
in sequence with 3-to-8 decoder so that when
the letter is picked to be put on the 7 segment
display it can know exactly where to go by
what display is on according to the 3-to-8
decoder. The top 8-to-1 MUX will be used to
shift the message from right to left across the
7-segment displays. Where the 8-to-1 MUX
below that will be used to shift the message
from left to right across the displays.

G. 2-to-1 MUX

The 2-to-1 MUX will be used to control
which way the message is scrolling. This
MUX will allow the message to scroll from
right to left when the user puts the select bit
to 0. Then, when the user changes the
select bit to 1 then the message will change
directions and start scrolling from left to
right. This will allow the user to rotate the
message as well as to shift the message in
either direction and orientation when
working in accordance with the 4-to-1
MUX that controls what is going into the
shift register.

H. Shift Register

The shift register (aka super shift register)
component of our design is actually made up
for 8 registers that will all output the current

letter on Q, as well as, allow that Q to the input
on the next register so that during the next
clock cycle the message can continuously shift.
As the chosen FSMreg keeps feeding the lead
register new letters the rest of the registers are
shifting the information that was collected from
the lead register to the next register and so on
and so forth. This is key to the scrolling of the
message across the displays as while this is
shifting it is changing the inputs on the 8-to-1
MUX which allows the MUX to output the
message at different points as it travels from the
far right of the display to the far left of the
display. The rate at which it shifts will be
dependent on the enable it is receiving from
one of the four counters chosen by the user, as
stated previously. This allows the user control
scrolling speeds. This is the motor of our whole
design and is the most complex component of
our system.

III. EXPERIMENTAL SETUP

Using Vivado and VHDL we were able to
create, test, and simulate our project design and
upload it to the Nexys A7 board. These devices
and programs were used inorder to give our
project life. Vivado was the program provided to
us and which enabled the use of the VHDL
hardware coding language which was needed to
program our NEXYS DDR4 board. The
behavioral simulations in Vivado helped us to
test the board as well as tweak errors on a signal
by signal basis instead of having to guess by
testing it exclusively on the NEXYS DDR4
board. The expected results were to see the
characters shifting in the shift register as well as
on the outputs of the 8-to-1 MUX’s. These
things were key observations because once these
items were observed it was known that the
shifting of the message was working as it
should. Vivado is a very well versed and useful
program for us as engineers to use in order to
code in VHDL. The tools that are in place to
help are useful and can make debugging simple.

IV. RESULTS

Based on the circuit design, the message “ECE
2700” was properly displayed across the seven
segment displays. Using the switches on the
board varying scrolling speed, direction, and
orientation of the message. This was the
expected result of our project. The key findings
that were found during the implementation of
this program was that each program can be done
a multitude of different ways and that no one
way may be the correct way to do it. This
directly contributes to what was learned in class
as our professeur had explained to students that
it can be done multiple ways and possibly easier
ways but he wanted us to do it the long way first
to learn. The other findings in the creation of our
project is that all MUX’s are extremely useful
for allowing the user to make decisions in the
circuit in order to change the outcome at the end.
This also related to our class as we learned how
multiplexers are used in lots of circuits and can
give options as we solved boolean equations
using Shannon’s expansion to get the circuit of
that function. Lastly, it was observed that
counters, registers, and FSM are useful in a wide
range of applications and it shows as seen in our
implementation, we implemented many of these
items into our design. These observations were
expected as it was known that a Scrolling
7-segment display would test our skills in a
multitude of items learned throughout the
semester. These occurrences observed during the
implementation could all be explained as we
have run into these many times in the lab as well
as the classroom setting.

CONCLUSIONS

Some of the main take-away from this project is
learning how to debug any circuit as well as
develop the project on paper before going head
first into something that may not be fully
conceptualized. This is a very important tactic to
have when dealing with any problem as well as

dealing with problems in coding or designing a
system. The debugging of code will be useful in
our careers because some of us are computer
engineers and will need this ability to debug
efficiently more than ever. There is still a need
for all engineers to know how to code and be
able to debug circuits, as all industries move
toward a more A.I. approached workplace. Some
issues that were encountered when designing
this system were the 8 shift registers working in
unison and how they would shift the bits. The
top file also caused some issues as to how each
component was connected and how it would
affect the system as whole. These challenges
were met and were fixed inorder to ensure the
project worked as it was expected. Some
improvements that could be made are giving it
the ability to rotate a single character so it could

have a more dynamic look as it crossed the
display. Another improvement would be to use a
LCD display instead of a 7-segment display. The
reason for this is that it would allow the user to
use any message he or she wanted as you would
not be restricted to certain characters on the
LCD display as you are on the 7-segment
display. These improvements to the project
would give it much more application in the real
world today.

References
[1] D. Llamocca,"VHDL Coding for FPGAs."

Accessed November 24, 2020.
https://www.secs.oakland.edu/~llamocca/V
HDLforFPGAs.html.

Figure 1. FSMreg ASM Diagram

Figure 2. FSM ASM Diagram

Figure 3. Block Diagram

gggg

