
Digital Stopwatch

Designed in Vivado – Using VHDL – Implemented with Nexys DDR

 Jacob Konja, Dawsun Schrum, Zachary Page, Antonio Montagna

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

jacobkonja@oakland.edu, dtschrum@oakland.edu, zpage@oakland.edu, amontagna@oakland.edu

Abstract— Using software and hardware, students have worked

together to design a functional digital system. The reason for

this project is for students to get a better understanding of

digital systems as well as prove the knowledge gained

throughout this course. Developed in Vivado using VHDL, a

successful digital stopwatch has been implemented onto the

Nexys DDR. Like any general digital stopwatch, it will feature a

reset function, start/stop function (pause), and lap function

(read_write).

I. INTRODUCTION

No matter how advanced the world is or may become,
stopwatches will always play a role in society. A digital
stopwatch proves extremely helpful in certain situations. For
example, running a mile around a track and timing each lap
around the track utilizes a stopwatch perfectly and proves its
usefulness.

The overall goal is to project a count on a total of 8 seven-
segment displays. Now including the expected capabilities of
a basic digital stopwatch, there are some extra has some extra
features that will be implemented within this project. First is a
“reset” button, also known as a “cpu reset” on the Nexys
board, its functionality is quite simple and is defined within
the name. When pressed, it will restart the count of the
stopwatch. Next is the “pause” or “start_stop” function of the
project. This is also a simple goal as when pause is enabled
our desired outcome is that the count stops and vice versa.
When the pause is low, the count continues. Lastly and the
most complex is the “lap” function or “read_write” function.
At any moment in time we are able to store (read) a desired
count and show (write) it on the seven-segment display.

These functions prove the effectiveness of this project and
how it may be used in everyday life. Why use your phone as
a timer when you can carry your laptop and Nexys board with
you?

II. METHODOLOGY

As a group we quickly identified what would be required
of a digital stopwatch, and that would be a digital system of
course. A digital system will comprise of a Finite State
Machine (FSM) as well as a data-path circuit. To put together
a circuit such as this one, it requires a great deal of critical
thinking. It is very important to break apart the data-path
circuit into smaller parts to help explain and achieve a better
grasp of each elements functionality and the reason behind it.
These three smaller elements of the data-path circuit as well

as the FSM(s) will be explained in further detail component
by component.

As mentioned previously, we will be using all 8 seven-
segment displays of the Nexys DDR. The right most display
will show hundredths of seconds while the left most display
will show tens of hours. The max count for this digital
stopwatch is projected to be 99 hours 59 minutes 59.99
seconds. The count after this will revert back to 0 and recount.
In regards to the lap function, it will be controlled using
switches. 4 total laps will be able to be saved thus requiring to
assign a total of 5 switches. One switch for start/stop and 4 for
the lap functionality. Lastly, the cpu_reset button will be
enabled to of course reset the timer when desired. Registers,
counters, logic gates, and many other important components
play important roles and will be utilized within this project to
achieve the ultimate end goal. When the following elements
are put together, it creates a fully functional and efficient
digital stopwatch.

A. Counting

There is a total of 11 counters within the scope of this
project. 9 of them will be explained in further in this section.
To begin, as stated previously the max count possible is 99
hours 59 minutes 59.99 seconds. Therefore, these counters
require a limit. 6 of these counters have a max count of 9 or
“1001”. These are known as a BCD counter or Decade
counter; they have the capability to count 10 total unique
digits. 2 of these counters have a max count of 5, a max count
of 5 results in a modulo-6 counter.

Notice that once a counter reaches a max count, it effects
the other. For all counters except the 10 millisecond
(hundredth of a second) counter, the preceding counter must
reach a max out; almost like a domino effect. Therefore, each
counter must have 3 inputs and 2 outputs. The first input is
resetn, an active low input that as stated before will reset the
count to 0 when pressed. Second is the clock signal, enforcing
that the counter functions on the rising edge of the clock.
However, the counter may function on the rising edge of the
clock and when the third input is active; enable. When will
enable be ‘1’? Enable will be high when pause is low AND
the previous counter output has reached a max count (pulse
Z). The final out, Q, is simply the current count of the counter.
To summarize: when the pause is low AND the pulse Z is high
for the previous counter, that counter is able to count (during
transition phase from max to first count) and increase Q.

mailto:jacobkonja@oakland.edu
mailto:dtschrum@oakland.edu
mailto:zpage@oakland.edu
mailto:amontagna@oakland.edu

Now, this element is complete with 1 more addition. The
Nexys DDR has a native clock speed of frequency 100MHz.
This translates to a clock cycle every 10ns. This is not ideal
for a stopwatch that requires a count every 10ms. Therefore,
another counter is required to regulate the overall count.
count. It is connected to all enables in the counters. It has a
resetn, enable (pause), and an output Z that sends a pulse every
10ms (.01s).

The 4-bit Q’s for each counter are set into a 32-bit bus and
are lead into the next important element of this stopwatch. See
Figure 1 below for the drawn schematic of the counting
element.

Figure 1- Counting Element

B. Lapping

This element utilizes registers and tri-state buffers.
Effectively, the register will store data when enabled,
otherwise it will continue its previous value. The tri-state
buffer for that register determines whether the data may be
passed and eventually displayed onto the seven-segment
display. These 4 registers (for the 4 lap switches) include
resetn, a clock signal, lapE (lap enable), a data in (count)
and a data out (count). Essentially, when we want the lap
function to hold the value that is desired when the switch
is high, enforcing the register to hold the data of that
desired time. Thus, when a switch is high (to acquire a
desired lap time), we want the enable of the register (regE)
to be low. Therefore, regE = not(lapE) (when the counter
is active). LapE is an active-low enable.

Now, it is impossible to display both the count as
well as the elapsed time. Only one path of data is allowed
to pass to be displayed. This is where the tri-state buffers
come into play. There will be a total of 5 tri-state buffers.
One for the original count to pass, and one for each register
(4). BuffE (buffer enable) will be 5 bits. The buffer that
holds the count (BuffE(4)) will be the default buffer that is
enabled. While the stopwatch is counting, BuffE(4) is
enabled. The buffer enables are tied with the lapE. When
a LapE (switch) is flipped high and the count is paused, the
buffer assigned to that switch is prioritized and the desired
time captured while the count was running is displayed on
the seven-segment display. BuffE, regE and LapE will be
controlled via FSM.

All 5 of these 32-bit data paths then feed into an OR
gate. This OR gates works well for this situation because,
as stated previously, only one tri-state buffer is enabled at
a time. Thus the OR gate will always have 1 path of data
that contain 1’s and all the other paths of data will be ‘0’s.
See Figure 2 below for the full lapping schematic.

Figure 2 – Lapping Element

C. Finite State Machine for Lap Element

Now, as previously mentioned, the lapping element

includes a FSM. This FSM is intended to control the register

enable (regE) and the buffer enable (buffE). It is possible to

control these elements by the pause function as well as the

lap enable (lapE) functions. There are 3 possible states for

this FSM.

The first state is the counting state. It is business

per usual, the counter is doing its job and it is being

displayed on the FPGA. In this state, buffE(4) or the

counting buffer, is the buffer that is enabled; no other

buffers pass data. In this state we make the regE =

not(lapE), this is allowing us to store a desired lap time.

When we flip a lap switch, the regE set to that switch is now

low. This effectively stores the desired time we would like

to later display.

Now to achieve the second state, it depends on the

pause function. While un-paused, we stay in state one.

However, if the user decides to pause we now enter state

two. This state has all the register enables set to low. This is

to allow us to keep the stored data from state one. Now

while staying in this paused state, we can display the

elapsed times chosen during state one. If any of the switches

are now flipped high, it also enables the buffer for that

register to eventually be shown on the display. If the user

attempts to show two elapsed times, it will display the most

significant bit (MSB) of the switches that are enabled. For

example, if the user has lapE(3) and LapE(1) flipped high.

LapE(3) will be displayed over LapE(1).

If we are in state two and no elapsed times are

chosen to be shown, it defaults to the original count being

shown on the seven segment display. To go back to state 1,

it is determined by the pause function. See figure 3 below

for the Algorithmic State Machine (ASM) of the Lapping

FSM.

Figure 3 – ASM of FSM for Lap Element

D. Display Element

Now, the goal is to display the count or elapsed time

onto a total of 8 seven-segment displays. However, only one

seven-segment display may be used. This is where a seven-

segment serializer is utilized and implemented. The serializer

illuminates each digit for 1 ms every 8 ms. This action is too

quick for the human eye to see and thus works perfectly for

the digital stopwatch. This requires a 32-to-4 multiplexer,

seven-segment decoder, 3-to-8 decoder, and a FSM to control

the selector of the 32-to-4 multiplexer.

The inputs of this multiplexer contain eight 4-bit

inputs (totals to 32-bit bus). The FSM utilized within this

element is the selector for this multiplexer. Every ms it selects

a new 4-bit input. Therefore, all eight 4-bits are illuminated

in their respective display every 8 ms. The selector of the

FSM is also fed into a 3-to-8 decoder where each display is

illuminated every ms as well. Note that each enable input

(EN) of the decoder is fed into a NOT gate before entering

the display. This is because the seven-segment displays are

active low inputs.

Finally, the outputs of the multiplexer are fed into a

seven-segment decoder, which is ultimately feeds into each

seven-segment display. See the Figure 4 below of the full

display schematic.

Figure 4 – Display Element

E. Finite State Machine for Display Element

As previously stated, the FSM acts as the selector of

the multiplexer and selects a new input every ms. This

making all eight 4-bit inputs being displayed into their

respective display. How does the FSM select a new input

every ms? The FSM contains an enable; this enable is

controlled by a .001 second (1 ms) counter. This counter has

an output pulse Z that is generated every ms. This pulse then

feeds the into the enable of the FSM. Thus, the FSM is active

every ms and is able to select a new input to the multiplexer

every ms. See figure 5 of the ASM for the FSM.

Figure 5 – ASM of FSM for Display Element

III. EXPERIMENTAL SETUP

Figure 6 – Final Schematic

 The figure directly above shows the final

schematic that was ultimately designed into Vivado. The
three main elements (counting, lapping, and display) were
first designed, each having their own top file. Each
element was treated as its own mini-project. Once all three
main elements were complete, a master top file connected
each element together.

In regards to the I/Os for the Nexys board, there were a
small amount of constraints used. The cpu_reset was
linked to resetn, clock (clk) was added, and the 7-segement
display was also added. Switch 15 (SW [15]) was used as
the pause function. When the switch was high, the board is
in a paused state. When low, the board is in the counting
state. Lastly, SW [3] – SW [0], were used as the lap
enables.

IV. RESULTS

There were a multitude of different results
encountered when working toward the ultimate end goal.
There were complications and different problems that stood
out when developing this project.

Some problems shined more than others. One was
the test bench. While having a successful project, it was a
struggle to get a desired timing simulation to show the
functionality of the project. Below is the timing simulation
of the project, the counting portion is shown correctly and
shows the first 4 bits of the count (count[0] through count
[3]). However, it was a struggle to show the lap function in
the timing simulation. See figure 7 below for the behavorial
simulation of the project.

Figure 7 – Behavioral Simulation

Ultimately, the desired scope of the project was

successful and the stopwatch functioned in accordance to
the explained methodology. The desired functions worked
properly when implemented into the DDR as well as a
successful demo given to the instructor.

CONCLUSIONS

 This project helped develop a better

understanding of digital systems or digital logic as a whole.

There were components used in this project that were

learned throughout this entire class; from logic gates to

FSM’s. Although this was a successful design, there is

always room for improvement. There were some

considerations an improved design but due to time

constraints, knowledge of the subject, and unable to meet

with fellow group members (COVID-19) for an improved

collaboration these considerations were unable to be put

into effect. One consideration is displaying the elapsed

time while having the count continue. Essentially, not

having to pause the count to display the saved elapsed

times. Another consideration is to display the elapsed times

on a different display, such as a LCD (Liquid Crystal

Display).

 Overall, this project was a great success and the

knowledge learned will carry over to future classes as well

as future careers.

REFERENCES

[1] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, “VHDL(Unit 7): Digital System
Design” Fall 2020

[2] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, “Unit 7 – Introduction to Digital
System Design” Fall 2020

[3] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, “VHDL(Unit 6): Finite State
Machines” Fall 2020

[4] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, “VHDL(Unit 5): Sequential
Circuits” Fall 2020

[5] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, “Unit 6 – Sychronous Sequential
Circuits” Fall 2020

[6] Daniel Llamocca, Electrical and Computer Engineering
Department, Oakland University, Reconfigurable Computing
Research Laboratory,

[7] http://www.secs.oakland.edu/~llamocca/index.html

Improved resolution schematics:

Figure 1

Figure 2

Figure 4

Figure 6

Figure 7 (also attached with code)

