
1

5-bit signed calculator

 Mohammed Abdul Rafay, Mohammed Abdul Wasay, Sinan Ghareeb

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mohammedabdulra@oakland.edu, mohammedabdulwa@oakland.edu, sinanghareeb@oakland.edu

Figure 1: A schematic of the top-file design of the calculator.

Abstract—This project aimed to create a signed calculator with

the ability to perform addition, subtraction, multiplication, and

taking exponents, among many other functions. Converting into

integer then calculating was very helpful in many components,

as well as the use of conditional statements. The serializer and

binary to hexadecimal converter had many custom changes to

accommodate an “error” display on the board. Many changes

could be done to improve this project to make it better suited

for more advanced research or educational uses.

I. INTRODUCTION

This project’s aim was to create a general calculator with
binary inputs using switches, hexadecimal outputs from eight
seven segment displays, a few new functions in order to set it
apart from other calculators. In addition to the basic functions
of addition, subtraction, and multiplication, a division
function displaying the remainder alongside the quotient was
made. Also, an exponent calculator and store function were
also created. To simplify coding, in some components, the
inputs were converted into integers and then calculated. For
the division and exponent though, more modifications were
required to take into account inputs that were unable to be

computed either due to a lack of displays or due to undefined
outputs. Modifications accommodating special cases as those
described were also done on the binary-to-hexadecimal
converter and the serializer. These modifications mostly
involved the use of numerous “if” statements. Testing
revealed some important mistakes in these modifications that
were later resolved.

This project has the potential to be applied in many areas
in real life. This calculator could be adapted for use as a simple
scientific calculator, by adding a function for scientific
notation and providing the output in decimal format. Another
application is to solve simple mathematics problems, like
those in an educational setting or in accounting.

II. METHODOLOGY

This is the body of your report. Here you explain how you
designed your project.

A. Overview

The goal of this project is to visualize the calculator on the
Nexus-A7 board. In order to that, essential task of designing
the code needs to be completed. This task determines whether

2

the circuit is feasible. The main steps for designing this
specific signed calculator successfully is as follows:

• A schematic detailing the top-level design should
be created.

• The inputs and outputs of each component should
be determined.

• The design of each component will be
determined based on the task that should be
performed.

Based on these steps, first, a diagram like Figure 1 was
created. While the schematic was being drawn, the inputs and
outputs of each component were determined. For example, the
addition function should have two inputs for the two numbers
being added and one output for the result. The order the
components was also being determined. The inputs were
decided to first pass through each of the components
simultaneously, and then a multiplexor would determine
which operation is being carried out. Then, the output would
be modified by the binary-to-hexadecimal converter and then
the serializer for the 7-segment displays. Next, each
component was designed.

B. Addition

The Addition component was made using Dr. Llamocca’s
Generic 2's complement Adder/Subtractor Unit [1]. To avoid
any scenario when there is an overflow with 5-bit inputs, the
inputs were sign extended to 7-bits and then placed into a 7-
bit adder. This adder had 7 full adders port-mapped in series.
The output was then sign-extended to 32 bits for the
multiplexor.

C. Subtraction

Signed subtraction was implemented using the library
IEEE.NUMERIC_STD.ALL. This library allows for the
implementation of general basic mathematical operations like
addition, multiplication, division, and subtraction. Subtraction
can simply be implemented using the (-) operator, but this
operation can only be implemented on integer data types. This
project has inputs provided in the std_logic_vector format;
therefore, the input needs to be converted into integer, used
for subtraction, and then converted back to the original format.
This library helps by providing the to_signed and the
to_integer functions, among many others. For example, to
implement the subtractor, the command below is used :

std_logic_vector(to_signed((to_integer(signed(A_in)) -
to_integer(signed(B_in))),32))

In this command A_in and B_in are of data type
std_logic_vector which is converted to integer and then after
applying the operator output is then converted back to
STD__LOGIC_VECTOR. One benefit using this library is
that the answer does not have to be sign-extended, as that is
taken care of by the function used when converting back to
std_logic_vector.

D. Multiplication

This component was made by adapting Dr. Llamocca’s
Unsigned Integer Multiplier [1] such that the outputs would
be 32 bits. This needed to be done because the output goes
into a 32-bit multiplexor. The inputs were sign-extended to

make them from 5 to 10 bits and were then made the input of
the multiplier core. No modifications to the unsigned
multiplier core needed to be done since the input is already in
2C. Therefore, the numbers can be multiplied the same way
as unsigned integers. The output was once again sign-
extended to be 32 bits.

E. Exponential

The Exponential function also utilized the
IEEE.NUMERIC_STD.ALL library. Using the functions
described earlier, the inputs were converted to integer, the
exponent calculation was performed, with Input 1 as the base
and Input 2 as an unsigned, 5-bit exponent, and the result
converted back into a signed 32-bit std_logic_vector.
However, some of the outputs were bigger than 32-bits, and
raising negative bases to odd-numbered exponents caused the
calculator to fail. Outputs bigger than 32-bits cannot be
displayed on the Nexus A7 in hexadecimal format.
Additionally, it was assumed that Vivado had difficulties in
raising negative bases in integer format to odd exponents. To
remedy these issues, a large if statement checking whether the
inputs lead to outputs bigger than 32-bits and an error output
was created, and (Base)(odd number) was changed to
(Base)(odd number - 1) × (Base). These fixes resolved all issues.

Figure 2: Two snippets of the new code taking into account the size limit

of 32-bits (on the left) against the old code (on the right) for comparison.

F. Absolute Difference

Absolute difference between two signed numbers can be
calculated using the formula |𝐴 − 𝐵|. This was implemented
also using the library IEEE.NUMERIC_STD.ALL. A was
subtracted from B, and the abs() function was performed on
the result of the simple difference. The main command for the
conversion to integer and then applying the operator is given
below:

std_logic_vector(to_signed(abs((to_integer(signed(Ax)) -
to_integer(signed(Bx)))),32)).

3

G. Division

To implement the division operation, the same library and
datatype conversion functions mentioned above were utilized.
In addition, two different functions were utilized. One of them
was rem(), which return the remainder of the input data, and
the other one was (/), which returned the quotient. Also, a
Div_Error output was created in order to account for division
by zero.

H. Store and Display Function

The store function was created using Dr. Llamocca’s N-
bit Parallel access (right/left) shift register with enable and
synchronous clear - Structural version [1]. The register’s
function was reduced to only a Parallel access register by
deleting all lines, inputs, and outputs pertaining to the shifting
operation and the synchronous clear. When the store function
is enabled, the output is ‘loaded’ into the component. When it
is disabled, then the store function will maintain its output till
the next time it is enabled. The store function and the counter
share the same eight millisecond clock cycle because it was
convenient to do so. Also, it is impossible for humans to flip
the enable switch in that amount of time. The store function
does not have the ability to store the remainder outputs of
division, but only the quotient.

I. 32-bit Multiplexor

Multiplexors are generally used to forward a certain input
to the single output at a time. In this project, a 32-bit
multiplexor is used to select which operation is to be displayed
on the display. A 32-bit 8-to-1 multiplexor has eight 32-bit
input buses, a 3-bit select line input, and a single output of 32-
bits. A case operator is used to implement the design of the
multiplexor in this project. The basic function of a multiplexor
is that on the basis of certain data at the select line, a certain
input is selected at the output. It acts like a multi-pole single
through. This calculator only had seven operations, so one of
the buses of the multiplexor had a “0x00000000” input. The
selection of ‘111’ on the multiplexor is considered an error,
and this would be handled in the binary-to-hexadecimal
converter.

J. Modified Binary-to-Hexadecimal converter

Generally, the Binary-to-Hexadecimal converter converts
values by grouping four binary values together, which would
show as one nibble on the 7-segment display.

However, it was desired to display the signed remainder
of division to display a more accurate number on the 7-
segment display. Division by zero is also not supposed to give
a result, so the word ‘Error’ needs to be displayed on the 7-
segment display. In addition to the aforementioned issues,
some results in the exponent component consisted of more
nibbles than the eight 7-segment displays available, and since
there were seven operations in this calculator using a
multiplexor with a 3-bit select, there was one unwanted
combination for the select.

To display the division result with the quotient and the
remainder, a conditional statement was used using an input
from the select of the multiplexor and another input from the
remainder of the division. The decision to use a conditional

statement was taken since the following operations would
only take place when the division operation is selected. The
quotient and the remainder of the division were directly
converted to the form that is recognized by the seven-segment
displays. Since division by integers would result in smaller
numbers, two 7-segment displays were turned off. An ‘r’ was
also coded between the result and the remainder so that they
would be separate.

The other issues are in the same category; that the result
cannot be displayed. Therefore, the word ‘Error’ would be
displayed whenever any of the other scenarios occur, so they
became part of the same conditional statement as the one in
the previous paragraph. The output for all of these ‘special
cases’ were set to be the values required for the 7-segment
display to show ‘Error.’ The output of division and the other
‘special cases’ in this binary-to-hexadecimal converter were
set to be the output without any other modifications.

During the design process, it was envisioned that there
would be a separate ‘number checker’ that would check
whether the size of the result is smaller than eight nibbles, or
32 bits, then there would be an output from the ‘number
checker’ signaling whether the result has more than 32 bits or
not. However, checking the number of bits would only be
required for the result of the exponential, so the process of
checking the number of bits was moved inside the exponent
component. As a result, the ‘number checker’ became
redundant and was scrapped.

K. 7-segment display serializer

The general format of the 7-segment display serializer is
adapted from Dr. Llamocca’s 7-segment serializer [1].
However, some modifications took place in the Hexadecimal-
to-7-segment decoder. The division and Error cases would
pass through the decoder without any changes to the input.
However, the decoder would work normally under other
circumstances. This was accomplished using conditional
statements. The serializer was also modified so that it can
handle eight 7-segment displays.

In simulation, when division was selected, the output of
the serializer was showing a dash in some cases. Upon further
inspection, it was found that the input that went into the
decoder was having the correct value, but the output had the
unexpected result. This was because a single bit input that was
used to determine whether division was occurring (labelled
‘Check for Division operation’ in Figure 4) was not being used
in the conditional statement for division.

III. EXPERIMENTAL SETUP

The solution was devised and was designed successfully
in the implementation phase. The dip switches were used to
input the data and all the relevant information for the task.
That includes two 5-bit numbers and a 3-bit select line for
choosing the desired operation of ALU. Select lines are the
input of MUX which selects which input will be given on the
output. The data was processed by the operators as their
instances were called in the top model and data of all the
operations were available on the mux input side. The select
line would decide which function was selected and that data
will go on the output. The seven segments on the board were

4

attached to the output by means of the decoder to show the
actual result.

IV. RESULTS

The 5-bit signed calculator worked as expected after all
the issues mentioned in the previous sections were resolved.
The user would enter two 5-bit signed binary numbers that are
input 1 and input 2. This would be done by turning the switch
on for the bit to be given a value of ‘one,’ and turning the
switch off for the value to be a ‘zero.’ Then, the user has to
select the desired math operation using the 3-bit select. ‘000’
would select addition, ‘001’ would select subtraction, ‘010
would select multiplication, ‘011’ would select exponent,
‘100’ would select absolute difference, ‘101’ would select
division, and ‘110’ would display a stored result. If the user
selects ‘111’, the word ‘Error’ would be displayed on the
seven-segments since it is not supposed to be used and is not
programmed to do an operation.

The result would be displayed on the seven-segment
displays in hexadecimal. If the user wants to store a result that
they would want to display later, the enable switch would need
to be turned on, and then off. If the user wants to clear the
stored result, they would need to turn the reset switch on and
then off. The order of the switches on the board and the bit
placement of the inputs on the board, as well as a link to the
demonstration of the calculator functioning is in the captions
for Figure 3.

Figure 3: The bit arrangement of the inputs used. For a demonstration of

the calculator, please visit this link: https://youtu.be/WcpUoIuIUdQ.

One unexpected result on the board was that the division
by zero was not showing the word ‘Error’ on the seven-
segment display. Initially, some inferred latches were found
but fixing those did not solved the problem. It was discovered
that an output that signaled to the serializer that division was
selected by the user was not set to the correct value when
dividing by zero and this was fixed. Another unexpected result
was that the seven-segment on the board displays showed dash
as the sign of the remainder when it was positive instead of a
zero. When reading the binary to hexadecimal converter code,
it was found that the segments in the display that were
supposed to ‘1’ were ‘0’ and those that were ‘0’ were ‘1.’
Since the 7-segments are active low, the value ‘1111110’
would show a dash on the 7-segment display. This was
rectified to ‘0000001’ so that a zero would appear.

CONCLUSIONS

The assigned task was successfully implemented on the
FPGA Nexys-A7 board. The output was shown on the seven-
segment available on the board. The input data is controlled
by the dip switches and operations are also selected by the dip
switches. In implementing the task hands-on learning is done
to use the dip switches, display, and coding style. This can
help in implementing the different tasks on the board.

Despite making a calculator that is unique in many ways,
there are plenty of improvements that could be done. One of
these could be adding support for negative exponents or taking
roots, as that will allow the calculator to be used in more
advanced settings, like scientific research and higher-level
mathematics courses. Another suggestion is adding the ability
to use constants like π and e in calculations, as this will allow
modelling exponential populational growth or decline.

REFERENCES

[1] D. Llamocca, VHDL Coding for FPGAs. [Online]. Available:

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
[Accessed 6 December 2020].

https://youtu.be/WcpUoIuIUdQ

5

Figure 4: A block-diagram of the calculator, including the Control (in gold), and the Datapath (in various other colors). The counter and the store function

share the same clock input (not pictured).

