RGB LED Control

List of Authors (Jermaine Juarez, Tajwar Eram, David Sheridan)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, Ml

e-mails: jmjuarez@oakland.edu, tzeram@oakland.edu, dsheridan2@oakland.edu

Abstract—The purpose of this project is to create an
RGB LED controller using a Nexys A7 board. The
user will control the intensity of each color with the
accelerometer (ADXL362) data on the board. The
change in color is caused by the change in orientation
from the change in the 8-bit data from the
accelerometer.

Introduction

The Nexys A7 board has many things that can be
utilized in the board to control its tri-color RGB LEDs.
The accelerometer on the board could be used to
control the RGB LEDs in the real world as they are
important for communication protocols. Especially to
warn individuals if the environment or orientation is
hostile for the specific hardware it is being
communicated with. The scope of this project will not
go that far, however, a good start is to be able to
move the accelerometer and allow a vast array of
colors.

Utilizing knowledge from the curriculum, VHDL code
to reference, and through further research,
fundamental approaches to low- level-programming
through Vivado will be used. This includes synthesis
of the code, functional simulations, generating
bitstreams, and finally programming the Artix-7 board.
With the approach to coding, breaking the whole
project into a block diagram is necessary which will be
seen next in the report.

L1 s wosi

L » sck

RLED

oLED
BLED

Specifically, as you see from the block diagram, the
accelerometer, PWM, and FSMs are all components
in the system. Each color will be dedicated to certain
bits of accelerometer like the least significant bits
related to the Blue LED and the most significant bits
to the Red LED. This is the fundamental methodology
of this RGB controller. The individual components and
VHDL implementation will be gone into more in-depth
in the next section.

Methodology
ADXL362 Accelerometer

The main objective of this project is to use certain
hardware on the Nexys Artix-7 board to control the
color and intensity of the tricolor LEDs though
changing the orientation of it. Specifically, using the
ADXL362 accelerometer. The pins of this hardware is
seen below:

2 o
(L] = }m
el 5155 il!i Eu‘: i
Woowo fi ¥ ¢ G-t ool illl o f 13 4 GND
NG 3] Ciif ono
-5t ADXL362 3
RESERVED || 3 ! ‘yopyview .13 INT?
heeue. [Molto Scale) ...
seLK | I3 RESERVED
RESERVED [} & ¢ =7 =% =3 [v 1| INT2
_____ el ol fal L2
o [
2 3 I8
E =
SPI

From these pins, you can see the various SPI pins
needed for communication with the ADXL362 and the
Nexys Artix 7. The pins MISO, MOSI, SCLK, and nCS
are the SPI signals. The Artix 7 acts as a “Master” bus
for the data and ADXL362 is the “Slave” bus that
allows the data to go through. The two pictures below
highlight what these pins exactly are.

INT1 — C16
INT2 —» E15
MOS| «—— B14
MISO —» D13
~CS «—C15
SCLK <— D15
ADXL362 Artix 7

(11, [3]

INT1: Interrupt One

INT2: Interrupt Two

MOSI: Master Out Slave In
MISO: Master In Slave Out
~CS: Slave Select (Active Low)
SCLK: Serial Clock

SPI SLAVE

CE ——py

SCK ———
SHIFT REGISTER

1 1
SDI -_|F' ‘ | | | =t 5D|

Shift Register Used

The second picture highlights the process of using a
shift register to transfer the data to the Master bus.
The specific file, which will be gone into more detail
later in this report is called the “wr_reg_ADXL362" file.
The reading of data from the ADXL362 then allowed
the group to approach its color control.

Approaches to Color Control

The purpose of the orientation based color control,
with the accelerometer, is to provide information about
the x, y, and z axes. If a specific color is assigned to
an axis, it gives a great variety of colors based on
moving the board around. The intensity of each LED
is altered based on the VHDL code written and

referenced. Additionally, the selector switches are
used to read a specific axis.

Pulse Width Modulation (PWM)

Pulse Width Modulation is used to control the
brightness of the LEDs. This mimics what analog
signals can do in a digital environment. Different duty
cycles provide varying degrees of intensity which is
useful for this project. These are consistent pulses
that vary in width to create these various intensities
[5]. This can be seen from the figure below:

Pulse Width Modulation Duty Cycles

0% 25% 50% 75% 100%
Duty Cycle Duty Cycle Duty Cycle Duty Cycle Duty Cycle
<> P— — e

v

i Average Voltage
1 Average Volthge _

Averagt Voltage

Voltage (V)

Average Voltage_

Average Voltage

o

Y

T T
. 4 6
Time (ms)
Note: 1 cycle =2ms @ 500 Hz

o4

It can be seen that the average voltage goes up
proportionally with the duty cycle. Given lower duty
cycles, the brightness is low. This is because the led
flickers less frequently at lower duty cycles, giving the
illusion of the brightness decreasing. Implementing
this in VHDL would be possible with code that takes
advantage of the clock on the board and setting
specific frequencies to give quality variations. Making
sure to map the correct variables to the .xdc files for
the specific board is also important as the RGB LED
must get the correct output from the code. This
requires combinational circuits to be used with the
addition of Finite state machines.

Finite State Machines (FSMs)

The FSMs are imperative to keep the project from
having logical inconsistencies as different states are
required for the different modes. For example, there
should be some way for the counter to function based
on how many counts are needed. This project
specifically needed a modulo-8 counter which will be
gone more in depth in the experimental setup section.
FSMs also have outputs that cycle through until the
full result is found. This is especially seen in the
Accelerometer and PWM block. The ADXL362 sensor
needs certain addresses to wake up the board and
prepare for the measurement mode which will be
explored further in the next section of this report.
Additionally this will also put all these components
together to make a functional RGB controller.

Experimental Setup

Implementing the components in VHDL and then
testing it was essential to bring this RGB LED
controller to life. Some of the most important parts of
the testing in this project was to do with synthesizing
the code for syntax errors. This then left the “.xdc” to
be checked for any errors through generating the
bitstream. When programming the board, it was able
to be told if the system was working properly. The
overall system is shown again below:

Overall System

L L+~ wosi

e sCIK

RLED

GLED
BLED

..

From this overall system, it can be seen that the top
file, with all of the components, has 4 inputs and 6
outputs. One of the inputs is for the MISO (Master In
Slave Out) which is an SPI signal. The “resetn” and
“clock” were inputs for the top file and also other
internal components. And finally, a two-bit selector for
the 3 modes for the registers for the axes is an input.
Half of the outputs are dedicated to the SPI signals
nCS, MOSI, and SCLK while the other half is
dedicated to the RLED, GLED, and BLED coming
straight out of the internal PWM system. The block
diagram can be seen in the next sub-section.

PWM LED system

pwm_leds2

odata,vegs_b“f.> p— : RLED
F——
: clock :

resetn

rg: mypwm
bC

. OPWM{————» GLED
clock : Jock :

resetn

rb: mypwm
16 bits be

oo OPWM{————+ BLED

»|resetn

Along with the resetn and clock inputs, the PWM LED
system requires the 8 bit data bus that comes from
the register. The 4 most significant bits are used to
calculate the duty cycle for the red LED, and the 4
least significant bits are used to calculate the duty
cycle for the blue LED. The green LED uses a set 4
bits of “0001” to calculate the duty cycle for the green
LED. The 4 bit values are then multiplied by the time
period variable (TPWM). The TPWM variable is set to
50000. The product of the two variables is a twenty bit
number, and the 16 most significant bits are sent to
the mypwm block for the respective colors.

1 - -
! PWM FSM .
be ' 16 bits bC

. OPWMp———p oPWM
clock ————»{clock

resetn —— »{resetn

As previously mentioned, there is a mypwm block for
each color of the LED. The single bit oPWM output is
what is sent to the RGB LED, and the only component
inside the block is the PWM FSM.

PWM FSM (pwm_led2.vhd)

resetn=0

s1 L
=0,

Q<=
DCq<=DC
"
e

Oor
=TPWM
DCq<=DC > @
else

S3

else

else TPWM-1 [Q<=0
Q DCg<=DC

The PWM FSM is what controls the pulse of the LED.
The first State resets the finite state machine. State
two checks that the duty cycle is within the proper
bounds. If the duty cycle is zero or above the TPWM
value, the FSM stays in State two. While the duty
cycle is zero, the oPWM value remains low.
Otherwise, the oPWM output is high. If the duty cycle
is within bounds, Q is incremented. If the duty cycle is
one, the FSM goes directly to State four. Otherwise, it
goes to State three. While in State three, the oPWM is
high and Q is incremented. Q is then checked against
the duty cycle value. If it is equal to one less than the
duty cycle, the FSM goes to State four. If it is less
than the duty cycle minus one, it remains in State
three. State four increments Q until it reaches the
TPWM value minus one, and sets the oPWM value
stays at zero. Once that is reached, the Q value is
reset, a new duty cycle is set, and the FSM goes back
to State two. So the duty cycle value can be seen as
a percentage, and while in State three the FSM
counts out the “on” pulse of the PWM, while State four
counts out the “off” pulse.

i

Accelerometer

The accelerometer used is an ADXL362
accelerometer found on the board of the Nexys A7.
The accelerometer measures data from the x-axis,
y-axis, z-axis and produces the analog data into a
digital 12-bit output. However, the 12-bit output is not
really needed as the accuracy is not typically needed

for many applications. Using 8-bit data is enough to
send to the FSM to choose and measure the data of
the different axis and to process it for the LED to
change color [4]. The accelerometer diagram is very
similar to the overall block diagram shown previously
and consists of different components that will be
talked about in the next sections.

8-Bit Register (my_rege.vhd)

resetn

my_rege 4

ol O o H}::lii:i_'_Q

o £ bits
E —— | E

sclr] sl

clockh —— 3

A register is created by multiple D-type flip flops and
each flip-flop stores one bit. In the Accelerometer file,
the register is what saves the values from the
ADXL362. The enable input means that the register
only gets activated when enable is high and when the
clock input is high. Many of these registers can also
make it possible to create a shift register which will be
explored in the write/read register
(wr_rd_reg_adxI362) for the ADXL362.

Accelerometer FSM

The Accelerometer Finite State Machine is what took
the 8-bit data from the write/read register and
processed it. Before the FSM is used many of the
outputs are set to ‘0’ and “00” as an initial condition.
When resetn = 0 the FSM begins and moves into
State 1. In State 1, start = ‘1", wr_rd = ‘1’, address =
“Ox1F”, and data = “0x52.” The FSM then moves into
State 2 and repeats until done = “1.” The FSM then
moves into State 3 where it prepares for measuring.
In State 3, start = “1’, wr_rd = ‘1’, address = “0x2D”
which is called the POWER_CTL mode for measuring
and data = “0x02” [4]. The FSM now moves into State
4 and repeats again until done = “1.” These first four
states prepare the FSM to measure and at State 5 it
begins to take note of the data. At state 5, start =1,
wr_rd = ‘0’, and data = “OxFF.” It then moves into the
selector which chooses the address of data to access
and what register to use. When address = “0x08’ it
goes into the X-axis data register, when address =
“0x09” it goes into the Y-axis data register, when
address= “Ox0A it goes into the Z-axis data register
and when address = “0Ox0B” it goes into the status
register [4]. After the selector chooses which register
to access it moves into State 6 which repeats in State
6 until done = “1.” When done = ‘1’, then E_odata =
‘1’, and the process repeats back up to State 5 and
cycles back and forth between State 5 and State 6
until resetn = ‘0’ again. This would not be possible
without the read/write register, which will be discussed
below.

Read/write register (wr_rd_reg_adxI362)

resetn

This register is a culmination of shift registers, a
modulo-8 counter, normal registers, and an FSM. This
FSM is complex and has a lot of outputs which just
used the sample code because it fulfilled our
purposes. The shift registers get their variables from
the FSM. The purpose of this register is to provide the
address, data, and read/write the 8 bits of the data [2].
The FSM from a higher level computer hardware
design course was heavily referenced. The FSM can

be seen below which is what was implemented into
VHDL in Vivado through additional sample code.

resetn=0
i

Page 6 [2]
It would be very inefficient to create an FSM based on
this read/write register, so it is very convenient to use
this.

Now understanding the methodology, this can be
seen from the sources bar in vivado which is
underneath:

Sources
Q ==+
~ ' Design Sources (1

v @ - topfile(struciure
~ @ 1 : accelerom(8

® g mypwm(B
® o mypwm(B

~ @ ji-wr_reg_ax352
> @ gf:fsm_sdlk(Beh

® g0 my_genpulse_scl

@ sa: my_pashiftreg(t

@ :=d: my_pashiftre,

@ di: dffe(beha

® fo:my_rege(@ehavioral) {

It can be seen that the components that were
discussed in this section are all seen and especially
all the bottom files for the read/write register.

Results

When programming the board, the color starts off as
green, and then it changes based on the first two
selector switches. The first one is for the Z-axis seen
below:

Z-axis (Sel= “10")

The variation of color can be seen from the selectors

flipped to different things. Switch 0 is zero and switch
1 is one for the selector and this gives readings from

the Z-axis register. There are other registers for other
axes seen below with nice variation.

Y-axis (Sel= “01")

It is important to note that there can be a soft register
reset once the reset button is clicked as mentioned
before [4]. This makes sure that the accelerometer
FSM can go back to the first state and then instantly
starts to read the values which can be seen below:

™

i

Conclusions

In conclusion, the accelerometer on the Nexys A7
board can be used to control the RGB LED. A great

deal was learned in the creation of this project. A
portion of the code used was obtained from example
code used in class. Some was used for the PWM
controller and some was used for the accelerometer
control. The PWM used to control the LED is a useful
tool that can be used to control different peripherals,
like motors or speakers. Similarly, SPI protocol can be
used to communicate with peripherals. While many
new topics were learned, there were also issues
encountered that were not overcome. The current
version of the program uses only one axis at a time to
control two colors of the LED, while the green portion
stays constant. In future versions of the project, each
axis of the accelerometer may be used to control an
individual color of the LED. Also, the selector may be
used to control the source of the input. Instead of just
using the accelerometer, the program could use an
accelerometer, a series of switches, or a temperature
sensor to control the LED. All in all, the RGB LED
could be improved for practical purposes, but
exploring this provided amazing insight and can also
indulge in even more control and variation in color.

References

1. Reference.digilentinc.com. 2020. [online]
Available at:
<https://reference.digilentinc.com/_media/ref
erence/programmable-logic/nexys-a7/nexys-
a7_rm.pdf> [Accessed 4 November 2020].

2. Llamocca, D., 2020. Unit 3 - External

Peripherals: Interfacing. [online] Available at:
<http://www.secs.oakland.edu/~llamocca/Wi
nter2020_ece4710.html> [Accessed 4
November 2020].

3. A.Brown, “Nexys A7 Reference Manual,”
Nexys A7 Reference Manual [Digilent
Documentation]. [Online]. Available:
https://reference.digilentinc.com/reference/pr
ogrammable-logic/nexys-a7/reference-manu
al. [Accessed: 25-Nov-2020].

4. Analog Devices, “ADXL362 Data Sheet.”
Analog Devices, Norwood, 2019.

5. [1]"'What is Pulse Width Modulation (PWM)?
Definition, Basics, Generation and Detection
Circuit and applications of Pulse Width
Modulation - Electronics Coach",[Online].

6. Pulse Width Modulation with analogWtite.
[Online]. Available:
http://robotic-controls.com/book/export/html/
57/. [Accessed: 12-Dec-2020].

