
Design and Implementation of 2x2 Matrix Multiplication

James Sherwood, Tim Kozen

Electrical Engineering Undergraduate Students

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: jsherwood@oakland.edu, tlkozen@oakland.edu

Abstract- This project outlines the development and

implementation of a 2x2 matrix multiplication device. It is
shown that this can be successfully realized using
hardware input switches, and output 7 segment displays,
in conjunction with Nexys A7 FPGA board programming.
For simplicity, the device studied is limited to unsigned
input and output elements. The successful operation is
proven through simulation, and a full final demonstration.

I. INTRODUCTION

The intent of this project is to implement a 2x2 matrix
multiplier using VHDL and a programmable Nexys A7 FPGA
board. The user must be able to input single digit matrix
elements using controls on the FPGA board, and subsequently
be able to view the elements of the resulting matrix through
on-board display components. Matrix multiplication is a
tedious process, and highly subject to human error.
Calculations using digital logic have obvious advantages,
especially when scaled.

The design of this matrix multiplication system requires
the use of tools from every section of this semester’s digital
logic design course. From the fundamentals of binary
unsigned numbers, to the cascading of logic gates for
mathematical operations, to the storage of data using flip
flops, and the encoding of that data to be displayed using 7
segment displays. This project provides an excellent case
study in connecting these ideas together to create a useful tool.

II. METHODOLOGY

The matrix multiplication device is divided into three
sections: User data input, mathematic operations, and
resultant output display. These components are coded in a
modular fashion and are detailed in the following sections.

A. User Data Input

To begin, each 2x2 matrix to be multiplied has four elements.
These eight separate matrix elements are inputted and stored
into the circuit via a decoder and register.

[
𝑎0 𝑎1
𝑏0 𝑏1

] 𝑋 [
𝑐0 𝑐1
𝑑0 𝑑1

]

Numerical vales from 0 to 9 are inputted in binary form
through five switches on a Nexys A7 FPGA board. Each of

the eight input matrix elements have a corresponding switch
also located on the FPGA board. In addition, there is also an
enable EN switch that when selected will store the user
inputted numerical value into one of eight register slots.

The user first selects the binary number which is to be stored
by activating the appropriate switches. Then, the specific
switch that corresponds to the desired matrix position is
selected. Finally, the EN switch is activated and then
deactivated. This procedure is the repeated for each successive
number in the matrices to be multiplied.
When the matrix element position switch and the EN switch
are selected at the same time a decoder recognizes that specific
9bit combination sends a select signal to a register that
activates one of eight memory slots corresponding to the
selections.

The input data is sent simultaneously to all register slots.
However, only the register slot activated by the decoders
signal will allow the data entry to be stored via a flip flop.

B. Mathematical Operations

The stored numbers are then passed through eight separate
multipliers. The architecture for the eight separate
multiplication operations are achieved through simple VHDL
language. Two 2x2 matrices are multiplied using the
following algorithm.

[
(𝑎0𝑐0 + 𝑎1𝑑0) (𝑎0𝑐1 + 𝑎1𝑑1)
(𝑏0𝑐0 + 𝑏1𝑑0) (𝑏0𝑐1 + 𝑏1𝑑1)

]

The resulting values from the multipliers are represented by
signals m0-m6, please reference fig 2.1 for schematic
representation. These signals have a range of [0 to 81],
requiring 7 bits to represent. These signals are passed to four
7-bit adders. The adders use entirely combinational circuits to
perform the addition operation. The adder outputs are the final
elements for the resultant matrix. These elements are
represented by signals r0 – r3.

[
𝑚0 + 𝑚1 𝑚2 + 𝑚3

𝑚4 + 𝑚5 𝑚6 + 𝑚7
] → [

𝑟0 𝑟1

𝑟2 𝑟3
]

Signals r0 – r3 have a range of [0 to 162] requiring 8 bits to
represent. These four signals are terminated at a 4:1 MUX to
be select-ably passed to the output circuit.

C. Resultant Data Output and Display

Once the resultant matrix elements have been calculated, the

elements are displayed, one at a time, on the lower three 7

segment displays. The matrix element (0-3) is selected

through the use of two input switches. The combination of

these switches creates the 2 bit signal “sel” in fig 2.1. This

signal is input to the 4:1 MUX, which passes the

corresponding element to its output.

To support display functionality, the 8-bit output of the 4:1

MUX is converted to three 4-bit BCD signals, one for each

possible digit in the element value. This is accomplished

using the “shift and add 3” method See reference 2.

Fig 2.1: Adder and output circuits

Since there are four 7 segment displays, and only one 7

segment display driver, the displays must be activated

serially. This means that for a short period of time (100us)

each display is exclusively activated, displaying the

corresponding element digit. All three displays used are

activated, in order, in this way, repeatedly. Since the human

eye cannot distinguish events faster than 60Hz, the complete

element value is seen, and the serial activation is not

observed.

To drive the serial activation of the 7 segment displays, a

finite state machine (FSM) is used. The FSM state diagram is

shown in fig 2.2.

Fig2.2: FSM state diagram

The FSM is triggered to change state using a counter

generated “En” signal. This bit is flipped to ‘1’ every 10,000

clock ticks (100us). The output of the FSM is the “sel_2”

signal used by both the 3:1 MUX and the 2 to 4 decoder to

activate the correct 7 segment display, and display the correct

value simultaneously.

III. EXPERIMENTAL SETUP

Simulation of the addition operation, and output displays
in shown in fig 4.1. For this simulation, the eight 7-bit inputs
to the adders are hard-coded into the test bench. The allows
the correct adder output to be verified, as well as the input and
output of the FSM.

IV. RESULTS

The following timing simulation and accompanying diagram
represents the input section of the matrix multiplier. It shows
that the inputs values are stored into the registers. In this case,
the stored numbers are integers ranging from 2 through 9. .
The radix has been switched to unsigned integers for ease of
demonstration.

Fig 4.1: Multiplier input simulation

Fig 4.2: Multiplier and input circuits

The below figure shows the testbench of one of the
multipliers. As can be seen, when the inputs to be multiplied
are 5 and 9 or 6 and 7 the result is 45 and 42 respectively.
Again, the radix has been switched to unsigned integers for
ease of demonstration.

Fig 4.3: Multiplier simulation

Fig4.4: Adder and FSM simulation

With all simulations successful, the hardware is programmed
with the completed top file. The successful demonstration
can be view using the following link:
Kozen Sherwood ECE 2700 Final Project Demo - YouTube

V. CONCLUSIONS

The 2x2 matrix multiplier was successfully implemented on

the FPGA hardware. This project provided an excellent

opportunity to cascade the various components learned

through out the semester.

One of the largest challenges in the development of this

device turned out to be the binary to BCD converter

(algorithm that we did not learn in ECE 2700). Also, learning

that there is only one 7 segment display driver on the Nexys

A7 FPGA board, necessitating the serial display system

(Counter, FSM, and MUX).

Even though the project was successful, there are areas that

could be improved: The input elements could be increased in

range or improved to accept signed numbers. The input could

also be improved to use a more user-friendly mechanism

(perhaps a keyboard and computer monitor). The output

could similarly be improved to display all resultant matrix

elements simultaneously (again, perhaps a computer screen).

REFERENCES

1. Ronald J. Tocci, Neal S. Widmer, and Gregory L Moss “Digital Systems
Principles and Applications” Pearson Education, Inc., 330 Hudson Street ,
New York New York 10013 (2011).

2. “VHDL Code for Binary to BCD Converter”. Invent Logic, All about
FPGAs. VHDL Code for Binary to BCD converter (allaboutfpga.com)

https://youtu.be/kUO01KxNWw8
https://allaboutfpga.com/vhdl-code-for-binary-to-bcd-converter/

	I. Introduction
	II. Methodology
	A. User Data Input
	B. Mathematical Operations
	C. Resultant Data Output and Display

	III. Experimental Setup
	IV. Results
	V. Conclusions
	References

