
5-bit Signed Calculator
with Switches

VHDL implemented calculator

Adam Kidwell, Braun Mayette, Christopher Gibson, Melad Haddad
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: bkidwell@oakland.edu, bmayette@oakland.edu, clgibson@oakland.edu, meladjoseph@oakland.edu

mailto:bkidwell@oakland.edu
mailto:bmayette@oakland.edu
mailto:clgibson@oakland.edu
mailto:meladjoseph@oakland.edu

Topfile

6-bit Adder
Modified lab 2 for a 4-bit adder to create a
6-bit adder. 6-bit adder modified to take 6 bit
input and output

 entity melad_6bitAdder is

 Port (X : in STD_LOGIC_VECTOR
 (5 downto 0);

 Y : in STD_LOGIC_VECTOR
 (5 downto 0);

 Cin : in STD_LOGIC;

 S : out STD_LOGIC_VECTOR
 (5 downto 0);
 Cout : out STD_LOGIC);

 end melad_6bitAdder;

The 6-bit signed adder is a
simple combinational circuit
where the inputs are A and B .
By extending A and B to 6-bits
sign to avoid overflow, and with
the use of 6 full-adder with a
Cn-1 sutractor that was added
will be able to produce signal S
5 downto 0. This will result in
the sum of two numbers either
positive or negative.

6 Full-Adder component melad_fulladder
port (X : in STD_LOGIC;

 Y : in STD_LOGIC;

 Cin : in STD_LOGIC;

 S : out STD_LOGIC;

 Cout : out STD_LOGIC);
end component;

Subtractor (2’s complement)
FULL ADDER

The full adder was added from a
previous assignment to be used
as a component in the final
combinational subtracter (2C).

entity fulladd is

port(cin, x, y : in std_logic;
 s, cout : ou
t std_logic);
end fulladd;

architecture structure of fulladd
is

begin

s <= x xor y xor cin;
cout <= (x and y) or (x and

cin) or (y and cin);

end structure;

x(3) x(0)x(2)x(4)x(5) y(0)y(2)y(3)y(4)y(5)

c(0)c(1)c(2)c(3)c(4)c(5)

s(0)s(1)s(2)s(3)s(4)

Addsub <=
‘1’

Overflow

cout

x(1) y(1)

s(5)

Subtractor cont. (2’s complement) [x + y(2C)]

signal c: std_logic_vector (6 downto 0);
signal yx: std_logic_vector (5 downto 0);

begin

 c(0) <= addsub ; cout <= c(6);
overflow <= c(6) xor c(5);

gi: for i in 0 to 5 generate
 yx(i) <= y(i) xor addsub;

fi: fulladd port map (cin => c(i), x => x(i), y => yx(i), s => s(i), cout => c(i+1));
 end generate;

end structure;

x(3) x(0)x(2)x(4)x(5) y(0)y(2)y(3)y(4)y(5)

c(0)c(1)c(2)c(3)c(4)c(5)

s(0)s(1)s(2)s(3)s(4)

Addsub <= ‘1’

Overflow

cout

With the modification from a previous code, a
combinational circuit was created with logic
gates to form a 2’s complement subtractor with
the input of two five bit signed numbers.

x(1) y(1)

s(5)

Input Inverter
This is the component
that converts negative
inputs to positive. Bit “i”
tracks if the output will
need to be inverted.

This component is
necessary for our
multiplier and divider,
which only work with
unsigned binary

Output Inverter
This is the component to invert the output of the divider, if necessary.

The same diagram is applicable with 10 bit inputs and outputs for the multiplier

Multiplier
Sequential multiplier modified
to take two five bit inputs and
output a ten bit answer.The
sequential multiplier works
through the use of two different
types of registers, an adder
and a fsm Mealy state machine

Multiplier cont.
Parallel access shift register: These
registers load the two five bit inputs
into the adder and the xor gate.

Adder: The adder controls the
multiplication of the circuit, replicating
the inputs untils the correct answer is
obtained.

Register: The register holds the output
and transmits it to next location, being
the leds and switches.

Multiplier Cont.
FSM (Mealy)
FSM: The fsm state machine
controls the operation of the
multiplier through the use of
binary numbers. State one
checks whether or not an input is
entered. State two ensure that
the input is valid and then
calculates an answer. If the input
is invalid then the fsm will restart
the process from state two. State
three sends the output (answer)
to its next location.

Divider
Modified Lab 6 for two 5
bit outputs. Additionally,
added output MUX to
prevent errors when
dividing by 0.

Operation Selecting MUX (10-bit)

2C to BCD Decoder
Converts the outputs of our

components from 2C to BCD for
the 7-segment displays

with ILUT select
 OLUT <=
 "0000000000000000" when "0000000000", --0
 "0000000000000001" when "0000000001", --1
 "0000000000000010" when "0000000010", --2
 "0000000000000011" when "0000000011", --3
 "0000000000000100" when "0000000100", --4
 "0000000000000101" when "0000000101", --5
 "0000000000000110" when "0000000110", --6
 "0000000000000111" when "0000000111", --7
 "0000000000001000" when "0000001000", --8
 "0000000000001001" when "0000001001", --9
 "0000000000010000" when "0000001010", --10
 "0000000000010001" when "0000001011",
 "0000000000010010" when "0000001100",
 "0000000000010011" when "0000001101",
 "0000000000010100" when "0000001110",
 "0000000000010101" when "0000001111", --15
 "0000000000010110" when "0000010000",

 ...

7-Segment Serializer
Slightly
modified
code from
VHDL page.
Added an
enable to
the output
for improved
user
experience.

Topfile

