
5-bit Signed Calculator with Switches
VHDL implemented calculator

Adam Kidwell, Braun Mayette, Christopher Gibson, Melad Haddad
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: bkidwell@oakland.edu, bmayette@oakland.edu, clgibson@oakland.edu, meladjoseph@oakland.edu

Abstract—We will create a calculator with the ability to add,
subtract, multiply, and divide two five-bit unsigned numbers:
the purpose is to create an easy switch operated way to
compute numbers. We will use a 7-segment serializer to display
the results on four 7-segment displays. The 7-segment display
will create an easy way to show the data for the user.

Figure 1

I. INTRODUCTION

For our project we will be designing a digital system
through the Vivado software that will be able to add,
subtract, multiply and divide two five-bit unsigned numbers.
The configuration of this system will require coding,
troubleshooting, and implementation. The purpose of our
project is to provide a user with an easy to use calculator
that can perform simple calculations. From this project we
will be able to increase our knowledge of how switches and
a seven-segment display interact with each other.
Specifically our project will use our knowledge of the
simple Arithmetic Logic Unit (ALU), and the decoder that
we learned in lab four, we will also change the amount of
bits from four to five. We have also added our knowledge of
the Iterative Divider Implementation that we learned in lab
six. Time management and teamwork will play an important
role in the creation of our project. Together we will develop
a system that individuals can use on a daily basis to help
with simple mathematical calculations.

II. METHODOLOGY

The main components of our circuit are the 6-bit
adder, the 6-bit subtractor, the 5-bit x 5-bit multiplier, the
5-bit / 5-bit divider, the input and output inverters, the

operation selecting MUX, the 2C-to-BCD Decoder, the
7-segment serializer, and, of course, the topfile and xdc file.

A. 6-bit Adder - Melad Haddad

Figure 2
The 6-bit signed adder is a simple combinational

circuit where the inputs are A and B (both 5 bits sign
extended to 6-bits to avoid overflow). With the use of six
full-adders with signals Cn-1 will be able to produce signal
S 5 downto 0. This will result in the sum of two numbers
either positive or negative.

B. 6-bit Subtractor - Braun Mayette

Figure 3
The 6-bit signed subtractor is a simple

combinational circuit where the inputs are A and B (both 5
bits sign extended to 6-bit to avoid overflow). With the use
of six full-adders with signals C 6 downto 0 will be able to
produce signal S 5 downto 0. This will result in the
difference of two numbers either positive or negative.

C. 5-bit x 5-bit Multiplier - Christopher Gibson
The multiplier circuit takes in two 5-bit inputs and

outputs the product in the form of a 10-bit answer.
Originally we planned for the multiplier to work with signed
numbers, so 10 bits were necessary to encompass all of our
outputs. In the end the multiplier was changed to only work
with unsigned numbers, so it would have been acceptable to
have a 9-bit output. The code we used followed a lecture for
an n-bit unsigned multiplier posted in Unit 7. The elements
included in this circuit are a register, a parallel access shift
register, an adder and a fsm. The adder element controls the
arithmetic operation through decimal transitions and

mailto:bkidwell@oakland.edu
mailto:bmayette@oakland.edu
mailto:clgibson@oakland.edu
mailto:meladjoseph@oakland.edu


replication of inputs. The FSM controls the operation of the
circuit through constant checks within each state. The block
diagram for the circuit can be seen in Figure 4, the FSM
state diagram can be seen in Figure 5, and the algorithm that
describes how the component works can be seen in Figure 6.
Images courtesy of Professor Llamocca’s Unit 7 notes.

Figure 4

Figure 5

Figure 6

D. 5-bit / 5-bit Divider - Adam Kidwell
Our divider circuit takes in two 5-bit inputs and

outputs a 6-bit quotient with a 5-bit remainder. It works as
long division works, going digit by digit until there is a
remainder smaller than the denominator. It follows the
algorithm shown in figure 8, under our block diagram in
Figure 7. R is stored in the bottom right parallel access shift
register, i is the number of bits of input A, R>B is computed
through the carryout of the fulladder, the subtraction R-B is
computed through the fulladder, and the bit qi is simply the
carryout of the fulladder. A FSM controls the enables and
selects of each of the shift registers to allow them to act
appropriately. Our code is a modified version of the code we
created for lab 6. The code was modified to fit the bit size of
the inputs, and also added a MUX at the output that outputs
“000000” if the input B is “00000”. This modification
prevents errors that may occur when dividing by 0. One of
the main difficulties of implementing this divider for our
project stemmed from the fact that this divider only works
with unsigned numbers. To circumvent this problem, we
designed two additional blocks: input inverter and output
inverter. Section E contains additional details about these
blocks.

Figure 7

Figure 8



E. Input and Output Inverter - Adam Kidwell
The input and output inverters were two blocks that

were necessary for our unsigned divider and unsigned
multiplier to work with in our signed calculator. The input
inverter takes the inputs A and B and, based on their MSB,
it performs the 2C operation on them to invert them. If the
MSB is 1, it indicates that the input is negative and needs to
have the 2C operation applied to it to make it positive.
Because of this, the inputs going into the multiplier and
divider are always positive. The input inverter also has a bit
to track whether or not the output of the multiplier or divider
needs to be inverted. For example, if A is negative and B is
positive, the output will need to be inverted. The bit i is
decided by performing the xor operation on the MSB’s of
the inputs. The outputs of the multiplier and divider both
feed into output inverters which use the i signal to decide if
the outputs need inverted or not. The block diagram for the
input inverter is shown in figure 9 and the block diagram for
the output inverter is shown in figure 10. Note that the
output inverter in figure 10 is for the divider - the output
inverter for the multiplier operates with 10-bits.

Figure 9

Figure 10

F. Operation Selecting MUX - Adam Kidwell
The operation selecting MUX is a very simple

multiplexor that takes the users input as the selector and has
four options, one for each mathematical operation that our
calculation can perform. “00” selects addition, “01” selects
subtraction, “10” selects multiplication, and “11” selects

division. The output of this MUX continues through the
circuit to be outputted on the 7-segment displays.

G. 2C-to-BCD Decoder - Adam Kidwell
The 2C-to-BCD Decoder was a fairly

straightforward, if tedious, component to create. We utilized
the with select function to map each of our possible 10-bit
inputs [-240,256] to four 4-bit outputs connected as one
16-bit output. For example, we would map the number 144
(0010010000) to 1, 4, and 4 (0000000101000100). Note that
1010 is mapped to show - in the case of a negative number.
To cut down the amount of numbers that needed to be
mapped, we utilized a 16’s times table to avoid mapping
numbers that our circuit could not output. This 16-bit result
R outputs to the 7-segment serializer, which receives it as
four 4-bit inputs A=R(15)&R(14)&R(13)&R(12)
B=R(11)&R(10)&R(9)&R(8), C=R(7)&R(6)&R(5)&R(4),
and D=R(3)&R(2)&R(1)&R(0).

H. 7-segment Serializer - Adam Kidwell
The 7-segment serializer takes the four inputs A, B,

C, and D, and uses a multiplexor to determine which input
gets displayed on the 7-segment displays. A counter in
combination with a FSM gives the MUX a selector value
which it holds for 1ms before moving on to the next selector
value. The selector value is also sent to a 2-to-4 decoder
whose output is used to enable only one 7-segment display
at a time. In conjunction, these two operations allow us to
display different numbers seemingly at the same time on the
7-segment displays. This block was available on the VHDL
meta-page, so we used that code as a starting place. We
made a slight modification to give the 7-segment displays an
enable for an improved user experience. This was
accomplished by adding a MUX that uses enable as its
selector. If enable is 0, it outputs “0000”. Figure 11 shows
an internal mapping of the 7-segment serializer.

Figure 11



I. Topfile and XDC file - Adam Kidwell
In the topfile, all of the previously mentioned

components are mapped together as can be seen in figure 1
(above). The user will use switches 0-4 as their input B,
switches 9-5 as their input A, switches 10-11 as the selector
for the operation selecting MUX, switch 12 as the enable
switch, and the CPU reset button as resetn.

III. EXPERIMENTAL SETUP

Our main tool for verifying the functionality of our
calculator was the simulation function in Vivado. Some
errors we caught through simulation were realizing the
multiplier was unsigned, realizing our adder and subtractor
needed to be 6-bit to avoid overflow, and realizing a few
incorrectly mapped signals. Fortunately, our project was
relatively easy to testbench as we control the inputs and the
outputs should merely match simple mathematical
operations. When the outputs did not match, we loaded in
all of the internal signals from the respective component.
Doing this allowed us to identify which signal was not
acting as expected, and we solved them accordingly. One
specific example was realizing that when we divided 0 and
0 in the divider, the output was “11111”. Realizing this error
leads to the modification of that circuit to avoid errors when
dividing by 0. One error we realized after uploading to the
Nexys board that we did not notice in the simulation was
that the results of the calculations were updating as the user
flipped the input switches, which did not look good and was
often confusing. This realization led to the modification of
the 7-segment serializer code that added in an enable
functionality.

IV. RESULTS

Most of our results came in the form of simulations
and timing diagrams. The practice we got in Unit 7 of the
class was the perfect preparation for understanding the
complex timing diagrams we were faced with. To keep
things as simple as possible, we ran different simulations for
each arithmetic component. It got most complex when the
output of the component did not match the expected result
based on the inputs. When this occurred, we had to add in
many of the internal signals of the component and go
through clock cycle by clock cycle to identify which signals
were behaving incorrectly. The timing diagram for each of
our components, including all of their internal signals, are
shown below to demonstrate the complexity of some of the
diagrams we had to understand. There are also images of the
project implemented on the Nexys board. Figures 12 and 16
correspond to the adder, figures 13 and 17 to the subtractor,
figures 14 and 18 to the multiplier, and figures 15 and 19 to
the divider.

Figure 12 (Adder Signals)

Figure 13 (Subtractor Signals)

Figure 14 (Multiplier Signals)

Figure 15 (Divider Signals)



Figure 16 (Adder)

Figure 17 (Subtractor)

Figure 18 (Multiplier)

Figure 19 (Divider)

CONCLUSIONS

In conclusion, having this project was great
practice in designing and implementing our own digital
systems. For components like the input and output inverter,
designing the component from the ground up to solve a
problem we were faced with was an exciting and rewarding
task. We learned a lot about debugging problems and



interpreting complex timing diagrams. The necessary
understanding of the more complex components like the
multiplier and the divider was great practice to make us
more comfortable with a range of hardware components,
especially FSMs. While we are very proud of our circuit,
there are of course improvements that could be made. For
one, the remainder output of the divider block displays no
matter which function the user has selected. A solution
could be using a 4-to-1 MUX whose selector is the selector
of the arithmetic function. This MUX inside of the divider
could have the remainder connected to the 4th input of the
MUX with the other 3 inputs simply having “00000”. This
would make it so the remainder only displayed when the
user selects the division function. Another improvement
could be made in our 2C-to-BCD decoder. Algorithms could
be utilized to map the 2C inputs to BCD instead of manually
mapping each number as our decoder does. This is not a big
problem for our circuit as there are only a couple hundred of
outputs that are possible. If our circuit were to be 6 bit or
even larger, use of an algorithm would be absolutely
necessary. Further improvements could be made to optimize
the code, such as using more parameterized components.
For example, we have multiple codes for 2-to-1 MUXs with
different sized inputs. We could have instead used one
2-to-1 MUX code that works for N-bit inputs. Similarly we
have multiple fulladders for different sized inputs when one
N-bit addsub could have been used for our adder, our
subtractor, and anywhere else in our circuit that needed an
adder. These inefficiencies are negligible due to the
simplicity of our circuit, but in a more complex circuit these
changes may be paramount.

REFERENCES

[1] "Llamocca, Daniel. Oakland University, ECE 2700" “using block
diagrams, previous code, and VHDL examples to aid us in our
design”


