
FPGA Sonar Distance Sensor
ECE 2700 Final Project

List of Authors (Bryan Dogariu, Emad Eissa, Sanket Patel, Neal Wright)

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
Emails: bryandogariu@oakland.edu, meeissa@oakland.edu, sgpatel@oakland.edu,

nwright@oakland.edu

Abstract
The purpose of this project is to design and
implement a circuit with an ultrasonic
(sonar) distance sensor utilizing an FPGA
board. This presented some challenges, like
connecting the sensor to the FPGA board,
sending data to the sensor, and interpreting
the data received from the sensor. The
distance sensor has many different
applications in the real world, including
sensors used in the automotive industry for
autonomous vehicles and parking assistance.
The HC-SR04 distance sensor that was used
is a hobby-level sensor with certain
limitations on accuracy and functionality,
but it performed well within the scope of the
design. This project was chosen specifically
to provide experience with implementing a
simple sensor in a circuit design using an
FPGA board.

I. Introduction
This project was motivated by the
widespread use of distance sensors in the
automotive industry and the practicality of
controlling and implementing a sensor in a
circuit design that involves an FPGA board.
The primary concern was attaching the
sensor to the FPGA board, sending and
receiving data, and using that data to control
parts of the circuit. There was a wide variety
of class topics that were used, including
state machines, multiplexers, converters, and
decoders. Research had to performed to
integrate the sensor into the circuit design
and understand how the sensor sent and
recognized ultrasonic pulses. There were
many challenges, including writing most of
the code from scratch, deriving the
algorithms, interpreting the data, and
properly wiring a step-down voltage for the
sensor echo.

II. Methodology

Finite State Machine
The finite state machine for the circuit was
designed to regulate the trigger and echo of
the distance sensor. The distance sensor
required a 10us trigger to send the burst of 8
40kHz pulses. This was accomplished in
State 1, waiting for the pulse to send and
then transitioning to State 2. In State 2, the
pulse had been sent and the FSM was
waiting for the rising edge of the echo to
transition to State 3. In State 3, the echo
width was counted using clock cycles to
determine the distance between the sensor
and the surface. Once this finished, the FSM
transitioned to State 4, where the value was
registered and initialized. After the value
was registered, the FSM reset to State 1 to
send the pulse again. The diagram is shown
below (Figure 1).

Figure 1. Finite State Machine block

diagram.
Datapath Circuit
The datapath circuit consisted of many
different variations on the standard
components taught in the class. The primary
components were counters, registers,
converters, multiplexers, and decoders.
The pulse counter was designed to send a
trigger to the sensor, which would then
initiate the burst of 8 40kHz pulses. It

received synchronous inputs from the FSM
to determine when it would trigger. The
echo counter received synchronous inputs
from the FSM to determine how much time
it took for the echo to register on the sensor.
The 22-bit output was sent to a synchronous
register that would save the output of the
echo counter and send it to the distance
calculator. The distance calculator used the
algorithm from the datasheet for the HC-
SR04 ultrasonic sensor: Distance = (high
level time * velocity of sound (340M/S) / 2
[1]. To accommodate for the conversion,
only the most significant nine bits were sent
to the binary-to-BCD converter and the
other 13 bits were ignored.
In the binary-to-BCD converter, the binary
values from the distance calculation were
converted to BCD and sent to three separate
outputs: hundreds, tens, and ones. These
values were fed into a multiplexor that used
a synchronous counter to act as a clock
divider and select the output.
The clock for the Nexys A7-100T is
100MHz and the display needed to refresh at
a minimum of 60Hz.[2] The inputs to the
multiplexor were the distance in the
hundreds place, the tens place, and the ones
place. The thousands place was fed with 4
‘0’ bits, because the maximum distance
range of the sensor was 458cm (therefore
the thousands place was unnecessary).
A 2-to-4 decoder was fed by the same
synchronous counter to serialize the seven-
segment display and enable the anodes in
sequence. The BCD-to-seven-segment
converter took the BCD for each output
from the multiplexor and converted them
from four bits to seven bits for the seven-
segment display. The top-level diagram is
shown below (Figure 2).

Figure 2. Top-level circuit block diagram.

It’s worth mentioning that the more difficult
components of this datapath circuit were
created from scratch and were not
downloaded or copy/pasted from code
sources online. The FSM, echo counter,
pulse counter, distance calculator, and
binary/BCD converter were all made from
the ground up. The binary-to-BCD converter
was created using the double dabble
algorithm with the help of video as a guide
[3].

HC-SR04 Ultrasonic Distance Sensor
The HC-SR04 required 5V to operate
properly and its detection range is 2cm –
400cm. Here is the basic principle of how
the sensor works: [1]

1. The trigger is HIGH for at least 10us
2. The module automatically sends

eight 40kHz pulses and detects the
pulse echo, if it exists

3. Time of high output I/O duration is
the time from sending the ultrasonic
pulse to receiving the ultrasonic
pulse

III. Experimental Setup
The Nexys A7-100T FPGA board was used
as the base hardware for the project, along
with an Arduino Mega 2560 as a
supplemental voltage source. The HC-SR04
distance sensor required 5V to operate
instead of the 3.3V supplied by the Nexys
board. Therefore, the Arduino board was
programmed to supply 5V to the trigger pin
of the HC-SR04. A voltage divider was used

to step the 5V from the echo pin down to
3.3V to return to the FPGA board.
Xilinx Vivado 2019.1 was the software used
to implement the code for the digital circuit.
A test bench was created for each
component to simulate outputs and debug
the circuits. Once every component was
verified, they were wired together using
internal signals and the entire circuit was
tested with a test bench. After simulation
and debugging, a bitstream was generated
and implemented on the board. The
following timing diagrams were generated
and captured (Figures 3 and 4).

Figure 3. Top-level timing diagram between

0 and 1.2 milliseconds.

Figure 4. Top-level diagram between

851.06 and 851.12 microseconds.

IV. Results
The desired result was to have the sensor
send and receive the pulses, the finite state
machine transition and give each component
in the data path circuit its required input, and
the seven-segment display show the
calculated distance. The sensor sent and
received the pulses as expected, as verified
via Arduino code. The step-down voltage
divider was verified with a multimeter. Each
component was coded from scratch,
simulated, and verified by a test bench. The

seven-segment display did not refresh as
expected (discussed after presentation and
solution was brainstormed). Because the
display didn’t refresh properly, a backup
display of LEDs was implemented to show
the calculated distance in binary.

V. Conclusions

The purpose of this project was to design
and implement a digital circuit with an
external distance sensor utilizing an FPGA
board. This project was accomplished using
not only principles and concepts learned in
class, but also an original design and
additional research by the team. The desired
result with the seven-segment display was
not obtained, but a secondary result was
obtained with the LEDs. The primary goal
of demonstrating conceptual and technical
competence was achieved by this team. The
secondary goal of working as a team to
conceptualize, implement, and troubleshoot
the project was also achieved.
There were several improvements that could
be made to the design. The most important

improvements would be increasing the
number of bits for the clock divider to slow
the refresh rate of the display to 60Hz and
slow the output from the register to 4Hz.
Secondary improvements include LEDs for
different ranges, a PCB for the step-down
voltage divider, and a display that turned
unnecessary digits off if the distance was
less than 100cm or 10cm.

References
[1] Elec Freaks. Ultrasonic Ranging Module HC-SR04.
Website.
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HC
SR04.pdf
[2] Digilent. Nexys A7 FPGA Board Reference Manual.
Website.
https://reference.digilentinc.com/_media/reference/program
mable-logic/nexys-a7/nexys-a7_rm.pdf
[3] Mittuniversitetet’s youtube video, “How to Implement
VHDL design for a Range sensor on an FPGA.“
https://www.youtube.com/watch?v=PJkiDAKVTFg

Appendix

Calculations had to be performed to convert the signals from the distance sensor to the FGPA
board. The clock on the FPGA board was set with a frequency of 50MHz, which translated into a
clock cycle of 20ns. The distance sensor had a time unit of microseconds, making conversion
necessary. The time between the pulse transmission and reception needed to be divided by 58,
according to the algorithm given in the datasheet. [1] The unit conversion is shown below.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛 𝑐𝑚) = 𝐻𝑖𝑔ℎ 𝑙𝑒𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑢𝑠) ∗
170𝑚

1𝑠
∗

100𝑐𝑚

1𝑚
∗

1𝑠

1000𝑚𝑠
∗

1𝑚𝑠

1000𝑢𝑠

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛 𝑐𝑚) = 𝐻𝑖𝑔ℎ 𝑙𝑒𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑢𝑠) ∗
0.017𝑐𝑚

𝑢𝑠

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛 𝑐𝑚) =
1𝑢𝑠

58.8

Because the algorithm required division, it was simplified in the following way:

1. Pulse width counter multiplied by 3
2. Result shifted 11 bits to convert from microseconds to nanoseconds
3. Output only used 9 most significant bits

This was not an exact implementation of the algorithm, but, as an approximation, it retained most
of the precision. This approximation was utilized in the distance calculations module of the data
path circuit.

